Predicting Spare Parts Inventory of Hydropower Stations and Substations Based on Combined Model

In this paper, a combined model is proposed to predict spare parts inventory in accordance with equipment characteristics and defect elimination records. Fourier series is employed to process the periodicity of the data, autoregressive moving average (ARMA) is used to deal with the linear autocorrel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2022, Vol.2022, p.1-11
Hauptverfasser: Ma, Zhenguo, Tang, Bing, Zhang, Keqi, Huang, Yuming, Cao, Danyi, Luo, Jiaohong, Zhang, Jianyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2022
creator Ma, Zhenguo
Tang, Bing
Zhang, Keqi
Huang, Yuming
Cao, Danyi
Luo, Jiaohong
Zhang, Jianyong
description In this paper, a combined model is proposed to predict spare parts inventory in accordance with equipment characteristics and defect elimination records. Fourier series is employed to process the periodicity of the data, autoregressive moving average (ARMA) is used to deal with the linear autocorrelation of the data, and backpropagation (BP) neural network is used to settle the nonlinearity of the data. The prediction results, comparisons, and error analyses show that the combined model is accurate and meets the practical requirements. The combined model not only fully utilizes the information contained in the data but also provides a reasonable decision basis for the procurement of spare parts, making the inventory in a safe state and saving holding costs.
doi_str_mv 10.1155/2022/1643807
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2651402310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2651402310</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2097-d17fd4496487e006651e2774cf7b305dcb2764aede7bd3ad11cc60557aec87193</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKs7f0DApY7Ny-RjutRSbaFioQruQibJ6JQ2GZOppf_eKa1bV-8-ONwLB6FrIPcAnA8ooXQAguUFkSeoB1zkGQcmT7tMKMuA5h_n6CKlJSEUOBQ9pObR2dq0tf_Ei0ZHh-c6tglP_Y_zbYg7HCo82dkYmrB1ES9a3dbBJ6y9xYtNmf7-R52cxcHjUViXte_yS7BudYnOKr1K7up4--j9afw2mmSz1-fp6GGWGUqGMrMgK8vYULBCOkKE4OColMxUsswJt6akUjDtrJOlzbUFMEYQzqV2ppAwzPvo5tDbxPC9calVy7CJvptUtCtjhOZAOuruQJkYUoquUk2s1zruFBC1V6j2CtVRYYffHvCv2lu9rf-nfwFBQnAt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2651402310</pqid></control><display><type>article</type><title>Predicting Spare Parts Inventory of Hydropower Stations and Substations Based on Combined Model</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library Open Access</source><source>Alma/SFX Local Collection</source><creator>Ma, Zhenguo ; Tang, Bing ; Zhang, Keqi ; Huang, Yuming ; Cao, Danyi ; Luo, Jiaohong ; Zhang, Jianyong</creator><contributor>Song, Jinyan ; Jinyan Song</contributor><creatorcontrib>Ma, Zhenguo ; Tang, Bing ; Zhang, Keqi ; Huang, Yuming ; Cao, Danyi ; Luo, Jiaohong ; Zhang, Jianyong ; Song, Jinyan ; Jinyan Song</creatorcontrib><description>In this paper, a combined model is proposed to predict spare parts inventory in accordance with equipment characteristics and defect elimination records. Fourier series is employed to process the periodicity of the data, autoregressive moving average (ARMA) is used to deal with the linear autocorrelation of the data, and backpropagation (BP) neural network is used to settle the nonlinearity of the data. The prediction results, comparisons, and error analyses show that the combined model is accurate and meets the practical requirements. The combined model not only fully utilizes the information contained in the data but also provides a reasonable decision basis for the procurement of spare parts, making the inventory in a safe state and saving holding costs.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2022/1643807</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Accuracy ; Artificial intelligence ; Autoregressive moving average ; Back propagation networks ; Deep learning ; Error analysis ; Forecasting ; Fourier series ; Hydroelectric power ; Hydroelectric power stations ; Inventory ; Inventory control ; Inventory management ; Machine learning ; Methods ; Neural networks ; Power supply ; Spare parts ; Substations ; Time series</subject><ispartof>Mathematical problems in engineering, 2022, Vol.2022, p.1-11</ispartof><rights>Copyright © 2022 Zhenguo Ma et al.</rights><rights>Copyright © 2022 Zhenguo Ma et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2097-d17fd4496487e006651e2774cf7b305dcb2764aede7bd3ad11cc60557aec87193</cites><orcidid>0000-0002-9819-1022</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids></links><search><contributor>Song, Jinyan</contributor><contributor>Jinyan Song</contributor><creatorcontrib>Ma, Zhenguo</creatorcontrib><creatorcontrib>Tang, Bing</creatorcontrib><creatorcontrib>Zhang, Keqi</creatorcontrib><creatorcontrib>Huang, Yuming</creatorcontrib><creatorcontrib>Cao, Danyi</creatorcontrib><creatorcontrib>Luo, Jiaohong</creatorcontrib><creatorcontrib>Zhang, Jianyong</creatorcontrib><title>Predicting Spare Parts Inventory of Hydropower Stations and Substations Based on Combined Model</title><title>Mathematical problems in engineering</title><description>In this paper, a combined model is proposed to predict spare parts inventory in accordance with equipment characteristics and defect elimination records. Fourier series is employed to process the periodicity of the data, autoregressive moving average (ARMA) is used to deal with the linear autocorrelation of the data, and backpropagation (BP) neural network is used to settle the nonlinearity of the data. The prediction results, comparisons, and error analyses show that the combined model is accurate and meets the practical requirements. The combined model not only fully utilizes the information contained in the data but also provides a reasonable decision basis for the procurement of spare parts, making the inventory in a safe state and saving holding costs.</description><subject>Accuracy</subject><subject>Artificial intelligence</subject><subject>Autoregressive moving average</subject><subject>Back propagation networks</subject><subject>Deep learning</subject><subject>Error analysis</subject><subject>Forecasting</subject><subject>Fourier series</subject><subject>Hydroelectric power</subject><subject>Hydroelectric power stations</subject><subject>Inventory</subject><subject>Inventory control</subject><subject>Inventory management</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Power supply</subject><subject>Spare parts</subject><subject>Substations</subject><subject>Time series</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEURYMoWKs7f0DApY7Ny-RjutRSbaFioQruQibJ6JQ2GZOppf_eKa1bV-8-ONwLB6FrIPcAnA8ooXQAguUFkSeoB1zkGQcmT7tMKMuA5h_n6CKlJSEUOBQ9pObR2dq0tf_Ei0ZHh-c6tglP_Y_zbYg7HCo82dkYmrB1ES9a3dbBJ6y9xYtNmf7-R52cxcHjUViXte_yS7BudYnOKr1K7up4--j9afw2mmSz1-fp6GGWGUqGMrMgK8vYULBCOkKE4OColMxUsswJt6akUjDtrJOlzbUFMEYQzqV2ppAwzPvo5tDbxPC9calVy7CJvptUtCtjhOZAOuruQJkYUoquUk2s1zruFBC1V6j2CtVRYYffHvCv2lu9rf-nfwFBQnAt</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Ma, Zhenguo</creator><creator>Tang, Bing</creator><creator>Zhang, Keqi</creator><creator>Huang, Yuming</creator><creator>Cao, Danyi</creator><creator>Luo, Jiaohong</creator><creator>Zhang, Jianyong</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-9819-1022</orcidid></search><sort><creationdate>2022</creationdate><title>Predicting Spare Parts Inventory of Hydropower Stations and Substations Based on Combined Model</title><author>Ma, Zhenguo ; Tang, Bing ; Zhang, Keqi ; Huang, Yuming ; Cao, Danyi ; Luo, Jiaohong ; Zhang, Jianyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2097-d17fd4496487e006651e2774cf7b305dcb2764aede7bd3ad11cc60557aec87193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Artificial intelligence</topic><topic>Autoregressive moving average</topic><topic>Back propagation networks</topic><topic>Deep learning</topic><topic>Error analysis</topic><topic>Forecasting</topic><topic>Fourier series</topic><topic>Hydroelectric power</topic><topic>Hydroelectric power stations</topic><topic>Inventory</topic><topic>Inventory control</topic><topic>Inventory management</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Power supply</topic><topic>Spare parts</topic><topic>Substations</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Zhenguo</creatorcontrib><creatorcontrib>Tang, Bing</creatorcontrib><creatorcontrib>Zhang, Keqi</creatorcontrib><creatorcontrib>Huang, Yuming</creatorcontrib><creatorcontrib>Cao, Danyi</creatorcontrib><creatorcontrib>Luo, Jiaohong</creatorcontrib><creatorcontrib>Zhang, Jianyong</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Zhenguo</au><au>Tang, Bing</au><au>Zhang, Keqi</au><au>Huang, Yuming</au><au>Cao, Danyi</au><au>Luo, Jiaohong</au><au>Zhang, Jianyong</au><au>Song, Jinyan</au><au>Jinyan Song</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Spare Parts Inventory of Hydropower Stations and Substations Based on Combined Model</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2022</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>In this paper, a combined model is proposed to predict spare parts inventory in accordance with equipment characteristics and defect elimination records. Fourier series is employed to process the periodicity of the data, autoregressive moving average (ARMA) is used to deal with the linear autocorrelation of the data, and backpropagation (BP) neural network is used to settle the nonlinearity of the data. The prediction results, comparisons, and error analyses show that the combined model is accurate and meets the practical requirements. The combined model not only fully utilizes the information contained in the data but also provides a reasonable decision basis for the procurement of spare parts, making the inventory in a safe state and saving holding costs.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/1643807</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9819-1022</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2022, Vol.2022, p.1-11
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2651402310
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library Open Access; Alma/SFX Local Collection
subjects Accuracy
Artificial intelligence
Autoregressive moving average
Back propagation networks
Deep learning
Error analysis
Forecasting
Fourier series
Hydroelectric power
Hydroelectric power stations
Inventory
Inventory control
Inventory management
Machine learning
Methods
Neural networks
Power supply
Spare parts
Substations
Time series
title Predicting Spare Parts Inventory of Hydropower Stations and Substations Based on Combined Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A34%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Spare%20Parts%20Inventory%20of%20Hydropower%20Stations%20and%20Substations%20Based%20on%20Combined%20Model&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Ma,%20Zhenguo&rft.date=2022&rft.volume=2022&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2022/1643807&rft_dat=%3Cproquest_cross%3E2651402310%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2651402310&rft_id=info:pmid/&rfr_iscdi=true