Predicting Spare Parts Inventory of Hydropower Stations and Substations Based on Combined Model
In this paper, a combined model is proposed to predict spare parts inventory in accordance with equipment characteristics and defect elimination records. Fourier series is employed to process the periodicity of the data, autoregressive moving average (ARMA) is used to deal with the linear autocorrel...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2022, Vol.2022, p.1-11 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2022 |
creator | Ma, Zhenguo Tang, Bing Zhang, Keqi Huang, Yuming Cao, Danyi Luo, Jiaohong Zhang, Jianyong |
description | In this paper, a combined model is proposed to predict spare parts inventory in accordance with equipment characteristics and defect elimination records. Fourier series is employed to process the periodicity of the data, autoregressive moving average (ARMA) is used to deal with the linear autocorrelation of the data, and backpropagation (BP) neural network is used to settle the nonlinearity of the data. The prediction results, comparisons, and error analyses show that the combined model is accurate and meets the practical requirements. The combined model not only fully utilizes the information contained in the data but also provides a reasonable decision basis for the procurement of spare parts, making the inventory in a safe state and saving holding costs. |
doi_str_mv | 10.1155/2022/1643807 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2651402310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2651402310</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2097-d17fd4496487e006651e2774cf7b305dcb2764aede7bd3ad11cc60557aec87193</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKs7f0DApY7Ny-RjutRSbaFioQruQibJ6JQ2GZOppf_eKa1bV-8-ONwLB6FrIPcAnA8ooXQAguUFkSeoB1zkGQcmT7tMKMuA5h_n6CKlJSEUOBQ9pObR2dq0tf_Ei0ZHh-c6tglP_Y_zbYg7HCo82dkYmrB1ES9a3dbBJ6y9xYtNmf7-R52cxcHjUViXte_yS7BudYnOKr1K7up4--j9afw2mmSz1-fp6GGWGUqGMrMgK8vYULBCOkKE4OColMxUsswJt6akUjDtrJOlzbUFMEYQzqV2ppAwzPvo5tDbxPC9calVy7CJvptUtCtjhOZAOuruQJkYUoquUk2s1zruFBC1V6j2CtVRYYffHvCv2lu9rf-nfwFBQnAt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2651402310</pqid></control><display><type>article</type><title>Predicting Spare Parts Inventory of Hydropower Stations and Substations Based on Combined Model</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library Open Access</source><source>Alma/SFX Local Collection</source><creator>Ma, Zhenguo ; Tang, Bing ; Zhang, Keqi ; Huang, Yuming ; Cao, Danyi ; Luo, Jiaohong ; Zhang, Jianyong</creator><contributor>Song, Jinyan ; Jinyan Song</contributor><creatorcontrib>Ma, Zhenguo ; Tang, Bing ; Zhang, Keqi ; Huang, Yuming ; Cao, Danyi ; Luo, Jiaohong ; Zhang, Jianyong ; Song, Jinyan ; Jinyan Song</creatorcontrib><description>In this paper, a combined model is proposed to predict spare parts inventory in accordance with equipment characteristics and defect elimination records. Fourier series is employed to process the periodicity of the data, autoregressive moving average (ARMA) is used to deal with the linear autocorrelation of the data, and backpropagation (BP) neural network is used to settle the nonlinearity of the data. The prediction results, comparisons, and error analyses show that the combined model is accurate and meets the practical requirements. The combined model not only fully utilizes the information contained in the data but also provides a reasonable decision basis for the procurement of spare parts, making the inventory in a safe state and saving holding costs.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2022/1643807</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Accuracy ; Artificial intelligence ; Autoregressive moving average ; Back propagation networks ; Deep learning ; Error analysis ; Forecasting ; Fourier series ; Hydroelectric power ; Hydroelectric power stations ; Inventory ; Inventory control ; Inventory management ; Machine learning ; Methods ; Neural networks ; Power supply ; Spare parts ; Substations ; Time series</subject><ispartof>Mathematical problems in engineering, 2022, Vol.2022, p.1-11</ispartof><rights>Copyright © 2022 Zhenguo Ma et al.</rights><rights>Copyright © 2022 Zhenguo Ma et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2097-d17fd4496487e006651e2774cf7b305dcb2764aede7bd3ad11cc60557aec87193</cites><orcidid>0000-0002-9819-1022</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids></links><search><contributor>Song, Jinyan</contributor><contributor>Jinyan Song</contributor><creatorcontrib>Ma, Zhenguo</creatorcontrib><creatorcontrib>Tang, Bing</creatorcontrib><creatorcontrib>Zhang, Keqi</creatorcontrib><creatorcontrib>Huang, Yuming</creatorcontrib><creatorcontrib>Cao, Danyi</creatorcontrib><creatorcontrib>Luo, Jiaohong</creatorcontrib><creatorcontrib>Zhang, Jianyong</creatorcontrib><title>Predicting Spare Parts Inventory of Hydropower Stations and Substations Based on Combined Model</title><title>Mathematical problems in engineering</title><description>In this paper, a combined model is proposed to predict spare parts inventory in accordance with equipment characteristics and defect elimination records. Fourier series is employed to process the periodicity of the data, autoregressive moving average (ARMA) is used to deal with the linear autocorrelation of the data, and backpropagation (BP) neural network is used to settle the nonlinearity of the data. The prediction results, comparisons, and error analyses show that the combined model is accurate and meets the practical requirements. The combined model not only fully utilizes the information contained in the data but also provides a reasonable decision basis for the procurement of spare parts, making the inventory in a safe state and saving holding costs.</description><subject>Accuracy</subject><subject>Artificial intelligence</subject><subject>Autoregressive moving average</subject><subject>Back propagation networks</subject><subject>Deep learning</subject><subject>Error analysis</subject><subject>Forecasting</subject><subject>Fourier series</subject><subject>Hydroelectric power</subject><subject>Hydroelectric power stations</subject><subject>Inventory</subject><subject>Inventory control</subject><subject>Inventory management</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Power supply</subject><subject>Spare parts</subject><subject>Substations</subject><subject>Time series</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEURYMoWKs7f0DApY7Ny-RjutRSbaFioQruQibJ6JQ2GZOppf_eKa1bV-8-ONwLB6FrIPcAnA8ooXQAguUFkSeoB1zkGQcmT7tMKMuA5h_n6CKlJSEUOBQ9pObR2dq0tf_Ei0ZHh-c6tglP_Y_zbYg7HCo82dkYmrB1ES9a3dbBJ6y9xYtNmf7-R52cxcHjUViXte_yS7BudYnOKr1K7up4--j9afw2mmSz1-fp6GGWGUqGMrMgK8vYULBCOkKE4OColMxUsswJt6akUjDtrJOlzbUFMEYQzqV2ppAwzPvo5tDbxPC9calVy7CJvptUtCtjhOZAOuruQJkYUoquUk2s1zruFBC1V6j2CtVRYYffHvCv2lu9rf-nfwFBQnAt</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Ma, Zhenguo</creator><creator>Tang, Bing</creator><creator>Zhang, Keqi</creator><creator>Huang, Yuming</creator><creator>Cao, Danyi</creator><creator>Luo, Jiaohong</creator><creator>Zhang, Jianyong</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-9819-1022</orcidid></search><sort><creationdate>2022</creationdate><title>Predicting Spare Parts Inventory of Hydropower Stations and Substations Based on Combined Model</title><author>Ma, Zhenguo ; Tang, Bing ; Zhang, Keqi ; Huang, Yuming ; Cao, Danyi ; Luo, Jiaohong ; Zhang, Jianyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2097-d17fd4496487e006651e2774cf7b305dcb2764aede7bd3ad11cc60557aec87193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Artificial intelligence</topic><topic>Autoregressive moving average</topic><topic>Back propagation networks</topic><topic>Deep learning</topic><topic>Error analysis</topic><topic>Forecasting</topic><topic>Fourier series</topic><topic>Hydroelectric power</topic><topic>Hydroelectric power stations</topic><topic>Inventory</topic><topic>Inventory control</topic><topic>Inventory management</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Power supply</topic><topic>Spare parts</topic><topic>Substations</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Zhenguo</creatorcontrib><creatorcontrib>Tang, Bing</creatorcontrib><creatorcontrib>Zhang, Keqi</creatorcontrib><creatorcontrib>Huang, Yuming</creatorcontrib><creatorcontrib>Cao, Danyi</creatorcontrib><creatorcontrib>Luo, Jiaohong</creatorcontrib><creatorcontrib>Zhang, Jianyong</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Zhenguo</au><au>Tang, Bing</au><au>Zhang, Keqi</au><au>Huang, Yuming</au><au>Cao, Danyi</au><au>Luo, Jiaohong</au><au>Zhang, Jianyong</au><au>Song, Jinyan</au><au>Jinyan Song</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Spare Parts Inventory of Hydropower Stations and Substations Based on Combined Model</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2022</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>In this paper, a combined model is proposed to predict spare parts inventory in accordance with equipment characteristics and defect elimination records. Fourier series is employed to process the periodicity of the data, autoregressive moving average (ARMA) is used to deal with the linear autocorrelation of the data, and backpropagation (BP) neural network is used to settle the nonlinearity of the data. The prediction results, comparisons, and error analyses show that the combined model is accurate and meets the practical requirements. The combined model not only fully utilizes the information contained in the data but also provides a reasonable decision basis for the procurement of spare parts, making the inventory in a safe state and saving holding costs.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/1643807</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9819-1022</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2022, Vol.2022, p.1-11 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2651402310 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library Open Access; Alma/SFX Local Collection |
subjects | Accuracy Artificial intelligence Autoregressive moving average Back propagation networks Deep learning Error analysis Forecasting Fourier series Hydroelectric power Hydroelectric power stations Inventory Inventory control Inventory management Machine learning Methods Neural networks Power supply Spare parts Substations Time series |
title | Predicting Spare Parts Inventory of Hydropower Stations and Substations Based on Combined Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A34%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Spare%20Parts%20Inventory%20of%20Hydropower%20Stations%20and%20Substations%20Based%20on%20Combined%20Model&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Ma,%20Zhenguo&rft.date=2022&rft.volume=2022&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2022/1643807&rft_dat=%3Cproquest_cross%3E2651402310%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2651402310&rft_id=info:pmid/&rfr_iscdi=true |