Orbital stability of peakon solutions for a generalized higher-order Camassa–Holm equation
In this paper, we investigate the orbital stability issue of a generalized higher-order Camassa–Holm (HOCH) equation, which is a higher-order extension of the quadratic CH equation. Firstly, we show that the HOCH equation admits a global weak peakon solution by paring it with some smooth test functi...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für angewandte Mathematik und Physik 2022-06, Vol.73 (3), Article 96 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Zeitschrift für angewandte Mathematik und Physik |
container_volume | 73 |
creator | Qin, Guoquan Yan, Zhenya Guo, Boling |
description | In this paper, we investigate the orbital stability issue of a generalized higher-order Camassa–Holm (HOCH) equation, which is a higher-order extension of the quadratic CH equation. Firstly, we show that the HOCH equation admits a global weak peakon solution by paring it with some smooth test function. Secondly, with the help of two conserved quantities and the non-sgn-changing condition, we prove the orbital stability of this peakon solution in the energy space in the sense that its shape remains approximately the same for all times. Our results enrich the research of the orbital stability for the CH-type equations and are useful to better understand the impact of higher-order nonlinearities on the dispersion dynamics. |
doi_str_mv | 10.1007/s00033-022-01739-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2651149313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2651149313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-fe561a54c6a0e2944700bccc69f392ffe93e1ff5618127fc83b07164f840be263</originalsourceid><addsrcrecordid>eNp9kL1OwzAQgC0EEqXwAkyWmA3nnyT1iCqgSJW6wIZkOem5dUnj1k4GmHgH3pAnISVIbEy3fN_d6SPkksM1ByhuEgBIyUAIBryQmskjMuJKANMg9TEZASjFhCiyU3KW0qbHCw5yRF4WsfStrWlqbelr377R4OgO7WtoaAp11_rQJOpCpJausMFoa_-OS7r2qzVGFuISI53arU3Jfn18zkK9pbjv7ME7JyfO1gkvfueYPN_fPU1nbL54eJzezlklc9kyh1nObaaq3AIKrVQBUFZVlWsntXAOtUTuXA9NuChcNZFl_32u3ERBiSKXY3I17N3FsO8wtWYTutj0J43IM86Vllz2lBioKoaUIjqzi35r45vhYA4VzVDR9BXNT0VzkOQgpR5uVhj_Vv9jfQOlOnZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2651149313</pqid></control><display><type>article</type><title>Orbital stability of peakon solutions for a generalized higher-order Camassa–Holm equation</title><source>SpringerLink Journals</source><creator>Qin, Guoquan ; Yan, Zhenya ; Guo, Boling</creator><creatorcontrib>Qin, Guoquan ; Yan, Zhenya ; Guo, Boling</creatorcontrib><description>In this paper, we investigate the orbital stability issue of a generalized higher-order Camassa–Holm (HOCH) equation, which is a higher-order extension of the quadratic CH equation. Firstly, we show that the HOCH equation admits a global weak peakon solution by paring it with some smooth test function. Secondly, with the help of two conserved quantities and the non-sgn-changing condition, we prove the orbital stability of this peakon solution in the energy space in the sense that its shape remains approximately the same for all times. Our results enrich the research of the orbital stability for the CH-type equations and are useful to better understand the impact of higher-order nonlinearities on the dispersion dynamics.</description><identifier>ISSN: 0044-2275</identifier><identifier>EISSN: 1420-9039</identifier><identifier>DOI: 10.1007/s00033-022-01739-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Engineering ; Mathematical Methods in Physics ; Orbital stability ; Quadratic equations ; Solitary waves ; Theoretical and Applied Mechanics</subject><ispartof>Zeitschrift für angewandte Mathematik und Physik, 2022-06, Vol.73 (3), Article 96</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-fe561a54c6a0e2944700bccc69f392ffe93e1ff5618127fc83b07164f840be263</citedby><cites>FETCH-LOGICAL-c363t-fe561a54c6a0e2944700bccc69f392ffe93e1ff5618127fc83b07164f840be263</cites><orcidid>0000-0002-9475-3753</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00033-022-01739-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00033-022-01739-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Qin, Guoquan</creatorcontrib><creatorcontrib>Yan, Zhenya</creatorcontrib><creatorcontrib>Guo, Boling</creatorcontrib><title>Orbital stability of peakon solutions for a generalized higher-order Camassa–Holm equation</title><title>Zeitschrift für angewandte Mathematik und Physik</title><addtitle>Z. Angew. Math. Phys</addtitle><description>In this paper, we investigate the orbital stability issue of a generalized higher-order Camassa–Holm (HOCH) equation, which is a higher-order extension of the quadratic CH equation. Firstly, we show that the HOCH equation admits a global weak peakon solution by paring it with some smooth test function. Secondly, with the help of two conserved quantities and the non-sgn-changing condition, we prove the orbital stability of this peakon solution in the energy space in the sense that its shape remains approximately the same for all times. Our results enrich the research of the orbital stability for the CH-type equations and are useful to better understand the impact of higher-order nonlinearities on the dispersion dynamics.</description><subject>Engineering</subject><subject>Mathematical Methods in Physics</subject><subject>Orbital stability</subject><subject>Quadratic equations</subject><subject>Solitary waves</subject><subject>Theoretical and Applied Mechanics</subject><issn>0044-2275</issn><issn>1420-9039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAQgC0EEqXwAkyWmA3nnyT1iCqgSJW6wIZkOem5dUnj1k4GmHgH3pAnISVIbEy3fN_d6SPkksM1ByhuEgBIyUAIBryQmskjMuJKANMg9TEZASjFhCiyU3KW0qbHCw5yRF4WsfStrWlqbelr377R4OgO7WtoaAp11_rQJOpCpJausMFoa_-OS7r2qzVGFuISI53arU3Jfn18zkK9pbjv7ME7JyfO1gkvfueYPN_fPU1nbL54eJzezlklc9kyh1nObaaq3AIKrVQBUFZVlWsntXAOtUTuXA9NuChcNZFl_32u3ERBiSKXY3I17N3FsO8wtWYTutj0J43IM86Vllz2lBioKoaUIjqzi35r45vhYA4VzVDR9BXNT0VzkOQgpR5uVhj_Vv9jfQOlOnZQ</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Qin, Guoquan</creator><creator>Yan, Zhenya</creator><creator>Guo, Boling</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9475-3753</orcidid></search><sort><creationdate>20220601</creationdate><title>Orbital stability of peakon solutions for a generalized higher-order Camassa–Holm equation</title><author>Qin, Guoquan ; Yan, Zhenya ; Guo, Boling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-fe561a54c6a0e2944700bccc69f392ffe93e1ff5618127fc83b07164f840be263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Engineering</topic><topic>Mathematical Methods in Physics</topic><topic>Orbital stability</topic><topic>Quadratic equations</topic><topic>Solitary waves</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Guoquan</creatorcontrib><creatorcontrib>Yan, Zhenya</creatorcontrib><creatorcontrib>Guo, Boling</creatorcontrib><collection>CrossRef</collection><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Guoquan</au><au>Yan, Zhenya</au><au>Guo, Boling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orbital stability of peakon solutions for a generalized higher-order Camassa–Holm equation</atitle><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle><stitle>Z. Angew. Math. Phys</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>73</volume><issue>3</issue><artnum>96</artnum><issn>0044-2275</issn><eissn>1420-9039</eissn><abstract>In this paper, we investigate the orbital stability issue of a generalized higher-order Camassa–Holm (HOCH) equation, which is a higher-order extension of the quadratic CH equation. Firstly, we show that the HOCH equation admits a global weak peakon solution by paring it with some smooth test function. Secondly, with the help of two conserved quantities and the non-sgn-changing condition, we prove the orbital stability of this peakon solution in the energy space in the sense that its shape remains approximately the same for all times. Our results enrich the research of the orbital stability for the CH-type equations and are useful to better understand the impact of higher-order nonlinearities on the dispersion dynamics.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00033-022-01739-3</doi><orcidid>https://orcid.org/0000-0002-9475-3753</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-2275 |
ispartof | Zeitschrift für angewandte Mathematik und Physik, 2022-06, Vol.73 (3), Article 96 |
issn | 0044-2275 1420-9039 |
language | eng |
recordid | cdi_proquest_journals_2651149313 |
source | SpringerLink Journals |
subjects | Engineering Mathematical Methods in Physics Orbital stability Quadratic equations Solitary waves Theoretical and Applied Mechanics |
title | Orbital stability of peakon solutions for a generalized higher-order Camassa–Holm equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A05%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orbital%20stability%20of%20peakon%20solutions%20for%20a%20generalized%20higher-order%20Camassa%E2%80%93Holm%20equation&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Physik&rft.au=Qin,%20Guoquan&rft.date=2022-06-01&rft.volume=73&rft.issue=3&rft.artnum=96&rft.issn=0044-2275&rft.eissn=1420-9039&rft_id=info:doi/10.1007/s00033-022-01739-3&rft_dat=%3Cproquest_cross%3E2651149313%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2651149313&rft_id=info:pmid/&rfr_iscdi=true |