Orbital stability of peakon solutions for a generalized higher-order Camassa–Holm equation

In this paper, we investigate the orbital stability issue of a generalized higher-order Camassa–Holm (HOCH) equation, which is a higher-order extension of the quadratic CH equation. Firstly, we show that the HOCH equation admits a global weak peakon solution by paring it with some smooth test functi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für angewandte Mathematik und Physik 2022-06, Vol.73 (3), Article 96
Hauptverfasser: Qin, Guoquan, Yan, Zhenya, Guo, Boling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Zeitschrift für angewandte Mathematik und Physik
container_volume 73
creator Qin, Guoquan
Yan, Zhenya
Guo, Boling
description In this paper, we investigate the orbital stability issue of a generalized higher-order Camassa–Holm (HOCH) equation, which is a higher-order extension of the quadratic CH equation. Firstly, we show that the HOCH equation admits a global weak peakon solution by paring it with some smooth test function. Secondly, with the help of two conserved quantities and the non-sgn-changing condition, we prove the orbital stability of this peakon solution in the energy space in the sense that its shape remains approximately the same for all times. Our results enrich the research of the orbital stability for the CH-type equations and are useful to better understand the impact of higher-order nonlinearities on the dispersion dynamics.
doi_str_mv 10.1007/s00033-022-01739-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2651149313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2651149313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-fe561a54c6a0e2944700bccc69f392ffe93e1ff5618127fc83b07164f840be263</originalsourceid><addsrcrecordid>eNp9kL1OwzAQgC0EEqXwAkyWmA3nnyT1iCqgSJW6wIZkOem5dUnj1k4GmHgH3pAnISVIbEy3fN_d6SPkksM1ByhuEgBIyUAIBryQmskjMuJKANMg9TEZASjFhCiyU3KW0qbHCw5yRF4WsfStrWlqbelr377R4OgO7WtoaAp11_rQJOpCpJausMFoa_-OS7r2qzVGFuISI53arU3Jfn18zkK9pbjv7ME7JyfO1gkvfueYPN_fPU1nbL54eJzezlklc9kyh1nObaaq3AIKrVQBUFZVlWsntXAOtUTuXA9NuChcNZFl_32u3ERBiSKXY3I17N3FsO8wtWYTutj0J43IM86Vllz2lBioKoaUIjqzi35r45vhYA4VzVDR9BXNT0VzkOQgpR5uVhj_Vv9jfQOlOnZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2651149313</pqid></control><display><type>article</type><title>Orbital stability of peakon solutions for a generalized higher-order Camassa–Holm equation</title><source>SpringerLink Journals</source><creator>Qin, Guoquan ; Yan, Zhenya ; Guo, Boling</creator><creatorcontrib>Qin, Guoquan ; Yan, Zhenya ; Guo, Boling</creatorcontrib><description>In this paper, we investigate the orbital stability issue of a generalized higher-order Camassa–Holm (HOCH) equation, which is a higher-order extension of the quadratic CH equation. Firstly, we show that the HOCH equation admits a global weak peakon solution by paring it with some smooth test function. Secondly, with the help of two conserved quantities and the non-sgn-changing condition, we prove the orbital stability of this peakon solution in the energy space in the sense that its shape remains approximately the same for all times. Our results enrich the research of the orbital stability for the CH-type equations and are useful to better understand the impact of higher-order nonlinearities on the dispersion dynamics.</description><identifier>ISSN: 0044-2275</identifier><identifier>EISSN: 1420-9039</identifier><identifier>DOI: 10.1007/s00033-022-01739-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Engineering ; Mathematical Methods in Physics ; Orbital stability ; Quadratic equations ; Solitary waves ; Theoretical and Applied Mechanics</subject><ispartof>Zeitschrift für angewandte Mathematik und Physik, 2022-06, Vol.73 (3), Article 96</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-fe561a54c6a0e2944700bccc69f392ffe93e1ff5618127fc83b07164f840be263</citedby><cites>FETCH-LOGICAL-c363t-fe561a54c6a0e2944700bccc69f392ffe93e1ff5618127fc83b07164f840be263</cites><orcidid>0000-0002-9475-3753</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00033-022-01739-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00033-022-01739-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Qin, Guoquan</creatorcontrib><creatorcontrib>Yan, Zhenya</creatorcontrib><creatorcontrib>Guo, Boling</creatorcontrib><title>Orbital stability of peakon solutions for a generalized higher-order Camassa–Holm equation</title><title>Zeitschrift für angewandte Mathematik und Physik</title><addtitle>Z. Angew. Math. Phys</addtitle><description>In this paper, we investigate the orbital stability issue of a generalized higher-order Camassa–Holm (HOCH) equation, which is a higher-order extension of the quadratic CH equation. Firstly, we show that the HOCH equation admits a global weak peakon solution by paring it with some smooth test function. Secondly, with the help of two conserved quantities and the non-sgn-changing condition, we prove the orbital stability of this peakon solution in the energy space in the sense that its shape remains approximately the same for all times. Our results enrich the research of the orbital stability for the CH-type equations and are useful to better understand the impact of higher-order nonlinearities on the dispersion dynamics.</description><subject>Engineering</subject><subject>Mathematical Methods in Physics</subject><subject>Orbital stability</subject><subject>Quadratic equations</subject><subject>Solitary waves</subject><subject>Theoretical and Applied Mechanics</subject><issn>0044-2275</issn><issn>1420-9039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAQgC0EEqXwAkyWmA3nnyT1iCqgSJW6wIZkOem5dUnj1k4GmHgH3pAnISVIbEy3fN_d6SPkksM1ByhuEgBIyUAIBryQmskjMuJKANMg9TEZASjFhCiyU3KW0qbHCw5yRF4WsfStrWlqbelr377R4OgO7WtoaAp11_rQJOpCpJausMFoa_-OS7r2qzVGFuISI53arU3Jfn18zkK9pbjv7ME7JyfO1gkvfueYPN_fPU1nbL54eJzezlklc9kyh1nObaaq3AIKrVQBUFZVlWsntXAOtUTuXA9NuChcNZFl_32u3ERBiSKXY3I17N3FsO8wtWYTutj0J43IM86Vllz2lBioKoaUIjqzi35r45vhYA4VzVDR9BXNT0VzkOQgpR5uVhj_Vv9jfQOlOnZQ</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Qin, Guoquan</creator><creator>Yan, Zhenya</creator><creator>Guo, Boling</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9475-3753</orcidid></search><sort><creationdate>20220601</creationdate><title>Orbital stability of peakon solutions for a generalized higher-order Camassa–Holm equation</title><author>Qin, Guoquan ; Yan, Zhenya ; Guo, Boling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-fe561a54c6a0e2944700bccc69f392ffe93e1ff5618127fc83b07164f840be263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Engineering</topic><topic>Mathematical Methods in Physics</topic><topic>Orbital stability</topic><topic>Quadratic equations</topic><topic>Solitary waves</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Guoquan</creatorcontrib><creatorcontrib>Yan, Zhenya</creatorcontrib><creatorcontrib>Guo, Boling</creatorcontrib><collection>CrossRef</collection><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Guoquan</au><au>Yan, Zhenya</au><au>Guo, Boling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orbital stability of peakon solutions for a generalized higher-order Camassa–Holm equation</atitle><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle><stitle>Z. Angew. Math. Phys</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>73</volume><issue>3</issue><artnum>96</artnum><issn>0044-2275</issn><eissn>1420-9039</eissn><abstract>In this paper, we investigate the orbital stability issue of a generalized higher-order Camassa–Holm (HOCH) equation, which is a higher-order extension of the quadratic CH equation. Firstly, we show that the HOCH equation admits a global weak peakon solution by paring it with some smooth test function. Secondly, with the help of two conserved quantities and the non-sgn-changing condition, we prove the orbital stability of this peakon solution in the energy space in the sense that its shape remains approximately the same for all times. Our results enrich the research of the orbital stability for the CH-type equations and are useful to better understand the impact of higher-order nonlinearities on the dispersion dynamics.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00033-022-01739-3</doi><orcidid>https://orcid.org/0000-0002-9475-3753</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0044-2275
ispartof Zeitschrift für angewandte Mathematik und Physik, 2022-06, Vol.73 (3), Article 96
issn 0044-2275
1420-9039
language eng
recordid cdi_proquest_journals_2651149313
source SpringerLink Journals
subjects Engineering
Mathematical Methods in Physics
Orbital stability
Quadratic equations
Solitary waves
Theoretical and Applied Mechanics
title Orbital stability of peakon solutions for a generalized higher-order Camassa–Holm equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A05%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orbital%20stability%20of%20peakon%20solutions%20for%20a%20generalized%20higher-order%20Camassa%E2%80%93Holm%20equation&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Physik&rft.au=Qin,%20Guoquan&rft.date=2022-06-01&rft.volume=73&rft.issue=3&rft.artnum=96&rft.issn=0044-2275&rft.eissn=1420-9039&rft_id=info:doi/10.1007/s00033-022-01739-3&rft_dat=%3Cproquest_cross%3E2651149313%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2651149313&rft_id=info:pmid/&rfr_iscdi=true