Nonlocal strain gradient finite element analysis of nanobeams using two-variable trigonometric shear deformation theory

In the present paper, a new trigonometric two-variable shear deformation beam nonlocal strain gradient theory is developed and applied to investigate the combined effects of nonlocal stress and strain gradient on the bending, buckling and free vibration analysis of nanobeams. The model introduces a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering with computers 2022-04, Vol.38 (Suppl 1), p.647-665
Hauptverfasser: Merzouki, Tarek, Houari, Mohammed Sid Ahmed, Haboussi, Mohamed, Bessaim, Aicha, Ganapathi, Manickam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 665
container_issue Suppl 1
container_start_page 647
container_title Engineering with computers
container_volume 38
creator Merzouki, Tarek
Houari, Mohammed Sid Ahmed
Haboussi, Mohamed
Bessaim, Aicha
Ganapathi, Manickam
description In the present paper, a new trigonometric two-variable shear deformation beam nonlocal strain gradient theory is developed and applied to investigate the combined effects of nonlocal stress and strain gradient on the bending, buckling and free vibration analysis of nanobeams. The model introduces a nonlocal stress field parameter and a length scale parameter to capture the size effect. The governing equations derived are solved employing finite element method using a 3-nodes beam element, developed for this purpose. The predictive capability of the proposed model is shown through illustrative examples for bending, buckling and free vibration of nanobeams. Comparisons with other higher-order shear deformation beam theory are also performed to validate its numerical implementation and assess its accuracy within the nonlocal context.
doi_str_mv 10.1007/s00366-020-01156-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2650970642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2650970642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9776789b5156f061f3e6f4769eed4c5836f648e198a16227af171712c34bba923</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAc3Sy2U26Ryn-g6IXPYfsdtKm7CY1SS377d1awZvMYWbgvQfvR8g1h1sOoO4SgJCSQQEMOK8kG07IhJeiYpWU4pRMgCvFQEp1Ti5S2gBwAVBPyP41-C60pqMpR-M8XUWzdOgztc67jBQ77A-v8aYbkks0WOqNDw2aPtFdcn5F8z6wLxOdaTqkObpV8KHH8WhpWqOJdIk2xN5kFzzNawxxuCRn1nQJr373lHw8PrzPn9ni7ellfr9greB1ZrVSUs3qpho7WZDcCpS2VLJGXJZtNRPSynKGvJ4ZLotCGcvVOEUryqYxdSGm5OaYu43hc4cp603YxbFL0oWsoFYgy4OqOKraGFKKaPU2ut7EQXPQB8D6CFiPgPUPYD2MJnE0pVHsVxj_ov9xfQMcSoCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2650970642</pqid></control><display><type>article</type><title>Nonlocal strain gradient finite element analysis of nanobeams using two-variable trigonometric shear deformation theory</title><source>SpringerLink Journals - AutoHoldings</source><creator>Merzouki, Tarek ; Houari, Mohammed Sid Ahmed ; Haboussi, Mohamed ; Bessaim, Aicha ; Ganapathi, Manickam</creator><creatorcontrib>Merzouki, Tarek ; Houari, Mohammed Sid Ahmed ; Haboussi, Mohamed ; Bessaim, Aicha ; Ganapathi, Manickam</creatorcontrib><description>In the present paper, a new trigonometric two-variable shear deformation beam nonlocal strain gradient theory is developed and applied to investigate the combined effects of nonlocal stress and strain gradient on the bending, buckling and free vibration analysis of nanobeams. The model introduces a nonlocal stress field parameter and a length scale parameter to capture the size effect. The governing equations derived are solved employing finite element method using a 3-nodes beam element, developed for this purpose. The predictive capability of the proposed model is shown through illustrative examples for bending, buckling and free vibration of nanobeams. Comparisons with other higher-order shear deformation beam theory are also performed to validate its numerical implementation and assess its accuracy within the nonlocal context.</description><identifier>ISSN: 0177-0667</identifier><identifier>EISSN: 1435-5663</identifier><identifier>DOI: 10.1007/s00366-020-01156-y</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Beam theory (structures) ; Bending ; Buckling ; CAE) and Design ; Calculus of Variations and Optimal Control; Optimization ; Classical Mechanics ; Computer Science ; Computer-Aided Engineering (CAD ; Control ; Deformation ; Finite element analysis ; Finite element method ; Free vibration ; Graphene ; Math. Applications in Chemistry ; Mathematical and Computational Engineering ; Mathematical models ; Original Article ; Parameters ; Shear deformation ; Shear strain ; Size effects ; Strain analysis ; Stress distribution ; Stress state ; Systems Theory ; Vibration analysis ; Viscoelasticity</subject><ispartof>Engineering with computers, 2022-04, Vol.38 (Suppl 1), p.647-665</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2020</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9776789b5156f061f3e6f4769eed4c5836f648e198a16227af171712c34bba923</citedby><cites>FETCH-LOGICAL-c319t-9776789b5156f061f3e6f4769eed4c5836f648e198a16227af171712c34bba923</cites><orcidid>0000-0002-1403-6683</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00366-020-01156-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00366-020-01156-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Merzouki, Tarek</creatorcontrib><creatorcontrib>Houari, Mohammed Sid Ahmed</creatorcontrib><creatorcontrib>Haboussi, Mohamed</creatorcontrib><creatorcontrib>Bessaim, Aicha</creatorcontrib><creatorcontrib>Ganapathi, Manickam</creatorcontrib><title>Nonlocal strain gradient finite element analysis of nanobeams using two-variable trigonometric shear deformation theory</title><title>Engineering with computers</title><addtitle>Engineering with Computers</addtitle><description>In the present paper, a new trigonometric two-variable shear deformation beam nonlocal strain gradient theory is developed and applied to investigate the combined effects of nonlocal stress and strain gradient on the bending, buckling and free vibration analysis of nanobeams. The model introduces a nonlocal stress field parameter and a length scale parameter to capture the size effect. The governing equations derived are solved employing finite element method using a 3-nodes beam element, developed for this purpose. The predictive capability of the proposed model is shown through illustrative examples for bending, buckling and free vibration of nanobeams. Comparisons with other higher-order shear deformation beam theory are also performed to validate its numerical implementation and assess its accuracy within the nonlocal context.</description><subject>Beam theory (structures)</subject><subject>Bending</subject><subject>Buckling</subject><subject>CAE) and Design</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Classical Mechanics</subject><subject>Computer Science</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Control</subject><subject>Deformation</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Free vibration</subject><subject>Graphene</subject><subject>Math. Applications in Chemistry</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical models</subject><subject>Original Article</subject><subject>Parameters</subject><subject>Shear deformation</subject><subject>Shear strain</subject><subject>Size effects</subject><subject>Strain analysis</subject><subject>Stress distribution</subject><subject>Stress state</subject><subject>Systems Theory</subject><subject>Vibration analysis</subject><subject>Viscoelasticity</subject><issn>0177-0667</issn><issn>1435-5663</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwFPAc3Sy2U26Ryn-g6IXPYfsdtKm7CY1SS377d1awZvMYWbgvQfvR8g1h1sOoO4SgJCSQQEMOK8kG07IhJeiYpWU4pRMgCvFQEp1Ti5S2gBwAVBPyP41-C60pqMpR-M8XUWzdOgztc67jBQ77A-v8aYbkks0WOqNDw2aPtFdcn5F8z6wLxOdaTqkObpV8KHH8WhpWqOJdIk2xN5kFzzNawxxuCRn1nQJr373lHw8PrzPn9ni7ellfr9greB1ZrVSUs3qpho7WZDcCpS2VLJGXJZtNRPSynKGvJ4ZLotCGcvVOEUryqYxdSGm5OaYu43hc4cp603YxbFL0oWsoFYgy4OqOKraGFKKaPU2ut7EQXPQB8D6CFiPgPUPYD2MJnE0pVHsVxj_ov9xfQMcSoCQ</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Merzouki, Tarek</creator><creator>Houari, Mohammed Sid Ahmed</creator><creator>Haboussi, Mohamed</creator><creator>Bessaim, Aicha</creator><creator>Ganapathi, Manickam</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-1403-6683</orcidid></search><sort><creationdate>20220401</creationdate><title>Nonlocal strain gradient finite element analysis of nanobeams using two-variable trigonometric shear deformation theory</title><author>Merzouki, Tarek ; Houari, Mohammed Sid Ahmed ; Haboussi, Mohamed ; Bessaim, Aicha ; Ganapathi, Manickam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9776789b5156f061f3e6f4769eed4c5836f648e198a16227af171712c34bba923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Beam theory (structures)</topic><topic>Bending</topic><topic>Buckling</topic><topic>CAE) and Design</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Classical Mechanics</topic><topic>Computer Science</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Control</topic><topic>Deformation</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Free vibration</topic><topic>Graphene</topic><topic>Math. Applications in Chemistry</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical models</topic><topic>Original Article</topic><topic>Parameters</topic><topic>Shear deformation</topic><topic>Shear strain</topic><topic>Size effects</topic><topic>Strain analysis</topic><topic>Stress distribution</topic><topic>Stress state</topic><topic>Systems Theory</topic><topic>Vibration analysis</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merzouki, Tarek</creatorcontrib><creatorcontrib>Houari, Mohammed Sid Ahmed</creatorcontrib><creatorcontrib>Haboussi, Mohamed</creatorcontrib><creatorcontrib>Bessaim, Aicha</creatorcontrib><creatorcontrib>Ganapathi, Manickam</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Engineering with computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merzouki, Tarek</au><au>Houari, Mohammed Sid Ahmed</au><au>Haboussi, Mohamed</au><au>Bessaim, Aicha</au><au>Ganapathi, Manickam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlocal strain gradient finite element analysis of nanobeams using two-variable trigonometric shear deformation theory</atitle><jtitle>Engineering with computers</jtitle><stitle>Engineering with Computers</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>38</volume><issue>Suppl 1</issue><spage>647</spage><epage>665</epage><pages>647-665</pages><issn>0177-0667</issn><eissn>1435-5663</eissn><abstract>In the present paper, a new trigonometric two-variable shear deformation beam nonlocal strain gradient theory is developed and applied to investigate the combined effects of nonlocal stress and strain gradient on the bending, buckling and free vibration analysis of nanobeams. The model introduces a nonlocal stress field parameter and a length scale parameter to capture the size effect. The governing equations derived are solved employing finite element method using a 3-nodes beam element, developed for this purpose. The predictive capability of the proposed model is shown through illustrative examples for bending, buckling and free vibration of nanobeams. Comparisons with other higher-order shear deformation beam theory are also performed to validate its numerical implementation and assess its accuracy within the nonlocal context.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00366-020-01156-y</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-1403-6683</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0177-0667
ispartof Engineering with computers, 2022-04, Vol.38 (Suppl 1), p.647-665
issn 0177-0667
1435-5663
language eng
recordid cdi_proquest_journals_2650970642
source SpringerLink Journals - AutoHoldings
subjects Beam theory (structures)
Bending
Buckling
CAE) and Design
Calculus of Variations and Optimal Control
Optimization
Classical Mechanics
Computer Science
Computer-Aided Engineering (CAD
Control
Deformation
Finite element analysis
Finite element method
Free vibration
Graphene
Math. Applications in Chemistry
Mathematical and Computational Engineering
Mathematical models
Original Article
Parameters
Shear deformation
Shear strain
Size effects
Strain analysis
Stress distribution
Stress state
Systems Theory
Vibration analysis
Viscoelasticity
title Nonlocal strain gradient finite element analysis of nanobeams using two-variable trigonometric shear deformation theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A53%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlocal%20strain%20gradient%20finite%20element%20analysis%20of%20nanobeams%20using%20two-variable%20trigonometric%20shear%20deformation%20theory&rft.jtitle=Engineering%20with%20computers&rft.au=Merzouki,%20Tarek&rft.date=2022-04-01&rft.volume=38&rft.issue=Suppl%201&rft.spage=647&rft.epage=665&rft.pages=647-665&rft.issn=0177-0667&rft.eissn=1435-5663&rft_id=info:doi/10.1007/s00366-020-01156-y&rft_dat=%3Cproquest_cross%3E2650970642%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2650970642&rft_id=info:pmid/&rfr_iscdi=true