Nonlocal strain gradient finite element analysis of nanobeams using two-variable trigonometric shear deformation theory
In the present paper, a new trigonometric two-variable shear deformation beam nonlocal strain gradient theory is developed and applied to investigate the combined effects of nonlocal stress and strain gradient on the bending, buckling and free vibration analysis of nanobeams. The model introduces a...
Gespeichert in:
Veröffentlicht in: | Engineering with computers 2022-04, Vol.38 (Suppl 1), p.647-665 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 665 |
---|---|
container_issue | Suppl 1 |
container_start_page | 647 |
container_title | Engineering with computers |
container_volume | 38 |
creator | Merzouki, Tarek Houari, Mohammed Sid Ahmed Haboussi, Mohamed Bessaim, Aicha Ganapathi, Manickam |
description | In the present paper, a new trigonometric two-variable shear deformation beam nonlocal strain gradient theory is developed and applied to investigate the combined effects of nonlocal stress and strain gradient on the bending, buckling and free vibration analysis of nanobeams. The model introduces a nonlocal stress field parameter and a length scale parameter to capture the size effect. The governing equations derived are solved employing finite element method using a 3-nodes beam element, developed for this purpose. The predictive capability of the proposed model is shown through illustrative examples for bending, buckling and free vibration of nanobeams. Comparisons with other higher-order shear deformation beam theory are also performed to validate its numerical implementation and assess its accuracy within the nonlocal context. |
doi_str_mv | 10.1007/s00366-020-01156-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2650970642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2650970642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9776789b5156f061f3e6f4769eed4c5836f648e198a16227af171712c34bba923</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAc3Sy2U26Ryn-g6IXPYfsdtKm7CY1SS377d1awZvMYWbgvQfvR8g1h1sOoO4SgJCSQQEMOK8kG07IhJeiYpWU4pRMgCvFQEp1Ti5S2gBwAVBPyP41-C60pqMpR-M8XUWzdOgztc67jBQ77A-v8aYbkks0WOqNDw2aPtFdcn5F8z6wLxOdaTqkObpV8KHH8WhpWqOJdIk2xN5kFzzNawxxuCRn1nQJr373lHw8PrzPn9ni7ellfr9greB1ZrVSUs3qpho7WZDcCpS2VLJGXJZtNRPSynKGvJ4ZLotCGcvVOEUryqYxdSGm5OaYu43hc4cp603YxbFL0oWsoFYgy4OqOKraGFKKaPU2ut7EQXPQB8D6CFiPgPUPYD2MJnE0pVHsVxj_ov9xfQMcSoCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2650970642</pqid></control><display><type>article</type><title>Nonlocal strain gradient finite element analysis of nanobeams using two-variable trigonometric shear deformation theory</title><source>SpringerLink Journals - AutoHoldings</source><creator>Merzouki, Tarek ; Houari, Mohammed Sid Ahmed ; Haboussi, Mohamed ; Bessaim, Aicha ; Ganapathi, Manickam</creator><creatorcontrib>Merzouki, Tarek ; Houari, Mohammed Sid Ahmed ; Haboussi, Mohamed ; Bessaim, Aicha ; Ganapathi, Manickam</creatorcontrib><description>In the present paper, a new trigonometric two-variable shear deformation beam nonlocal strain gradient theory is developed and applied to investigate the combined effects of nonlocal stress and strain gradient on the bending, buckling and free vibration analysis of nanobeams. The model introduces a nonlocal stress field parameter and a length scale parameter to capture the size effect. The governing equations derived are solved employing finite element method using a 3-nodes beam element, developed for this purpose. The predictive capability of the proposed model is shown through illustrative examples for bending, buckling and free vibration of nanobeams. Comparisons with other higher-order shear deformation beam theory are also performed to validate its numerical implementation and assess its accuracy within the nonlocal context.</description><identifier>ISSN: 0177-0667</identifier><identifier>EISSN: 1435-5663</identifier><identifier>DOI: 10.1007/s00366-020-01156-y</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Beam theory (structures) ; Bending ; Buckling ; CAE) and Design ; Calculus of Variations and Optimal Control; Optimization ; Classical Mechanics ; Computer Science ; Computer-Aided Engineering (CAD ; Control ; Deformation ; Finite element analysis ; Finite element method ; Free vibration ; Graphene ; Math. Applications in Chemistry ; Mathematical and Computational Engineering ; Mathematical models ; Original Article ; Parameters ; Shear deformation ; Shear strain ; Size effects ; Strain analysis ; Stress distribution ; Stress state ; Systems Theory ; Vibration analysis ; Viscoelasticity</subject><ispartof>Engineering with computers, 2022-04, Vol.38 (Suppl 1), p.647-665</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2020</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9776789b5156f061f3e6f4769eed4c5836f648e198a16227af171712c34bba923</citedby><cites>FETCH-LOGICAL-c319t-9776789b5156f061f3e6f4769eed4c5836f648e198a16227af171712c34bba923</cites><orcidid>0000-0002-1403-6683</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00366-020-01156-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00366-020-01156-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Merzouki, Tarek</creatorcontrib><creatorcontrib>Houari, Mohammed Sid Ahmed</creatorcontrib><creatorcontrib>Haboussi, Mohamed</creatorcontrib><creatorcontrib>Bessaim, Aicha</creatorcontrib><creatorcontrib>Ganapathi, Manickam</creatorcontrib><title>Nonlocal strain gradient finite element analysis of nanobeams using two-variable trigonometric shear deformation theory</title><title>Engineering with computers</title><addtitle>Engineering with Computers</addtitle><description>In the present paper, a new trigonometric two-variable shear deformation beam nonlocal strain gradient theory is developed and applied to investigate the combined effects of nonlocal stress and strain gradient on the bending, buckling and free vibration analysis of nanobeams. The model introduces a nonlocal stress field parameter and a length scale parameter to capture the size effect. The governing equations derived are solved employing finite element method using a 3-nodes beam element, developed for this purpose. The predictive capability of the proposed model is shown through illustrative examples for bending, buckling and free vibration of nanobeams. Comparisons with other higher-order shear deformation beam theory are also performed to validate its numerical implementation and assess its accuracy within the nonlocal context.</description><subject>Beam theory (structures)</subject><subject>Bending</subject><subject>Buckling</subject><subject>CAE) and Design</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Classical Mechanics</subject><subject>Computer Science</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Control</subject><subject>Deformation</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Free vibration</subject><subject>Graphene</subject><subject>Math. Applications in Chemistry</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical models</subject><subject>Original Article</subject><subject>Parameters</subject><subject>Shear deformation</subject><subject>Shear strain</subject><subject>Size effects</subject><subject>Strain analysis</subject><subject>Stress distribution</subject><subject>Stress state</subject><subject>Systems Theory</subject><subject>Vibration analysis</subject><subject>Viscoelasticity</subject><issn>0177-0667</issn><issn>1435-5663</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwFPAc3Sy2U26Ryn-g6IXPYfsdtKm7CY1SS377d1awZvMYWbgvQfvR8g1h1sOoO4SgJCSQQEMOK8kG07IhJeiYpWU4pRMgCvFQEp1Ti5S2gBwAVBPyP41-C60pqMpR-M8XUWzdOgztc67jBQ77A-v8aYbkks0WOqNDw2aPtFdcn5F8z6wLxOdaTqkObpV8KHH8WhpWqOJdIk2xN5kFzzNawxxuCRn1nQJr373lHw8PrzPn9ni7ellfr9greB1ZrVSUs3qpho7WZDcCpS2VLJGXJZtNRPSynKGvJ4ZLotCGcvVOEUryqYxdSGm5OaYu43hc4cp603YxbFL0oWsoFYgy4OqOKraGFKKaPU2ut7EQXPQB8D6CFiPgPUPYD2MJnE0pVHsVxj_ov9xfQMcSoCQ</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Merzouki, Tarek</creator><creator>Houari, Mohammed Sid Ahmed</creator><creator>Haboussi, Mohamed</creator><creator>Bessaim, Aicha</creator><creator>Ganapathi, Manickam</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-1403-6683</orcidid></search><sort><creationdate>20220401</creationdate><title>Nonlocal strain gradient finite element analysis of nanobeams using two-variable trigonometric shear deformation theory</title><author>Merzouki, Tarek ; Houari, Mohammed Sid Ahmed ; Haboussi, Mohamed ; Bessaim, Aicha ; Ganapathi, Manickam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9776789b5156f061f3e6f4769eed4c5836f648e198a16227af171712c34bba923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Beam theory (structures)</topic><topic>Bending</topic><topic>Buckling</topic><topic>CAE) and Design</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Classical Mechanics</topic><topic>Computer Science</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Control</topic><topic>Deformation</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Free vibration</topic><topic>Graphene</topic><topic>Math. Applications in Chemistry</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical models</topic><topic>Original Article</topic><topic>Parameters</topic><topic>Shear deformation</topic><topic>Shear strain</topic><topic>Size effects</topic><topic>Strain analysis</topic><topic>Stress distribution</topic><topic>Stress state</topic><topic>Systems Theory</topic><topic>Vibration analysis</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merzouki, Tarek</creatorcontrib><creatorcontrib>Houari, Mohammed Sid Ahmed</creatorcontrib><creatorcontrib>Haboussi, Mohamed</creatorcontrib><creatorcontrib>Bessaim, Aicha</creatorcontrib><creatorcontrib>Ganapathi, Manickam</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Engineering with computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merzouki, Tarek</au><au>Houari, Mohammed Sid Ahmed</au><au>Haboussi, Mohamed</au><au>Bessaim, Aicha</au><au>Ganapathi, Manickam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlocal strain gradient finite element analysis of nanobeams using two-variable trigonometric shear deformation theory</atitle><jtitle>Engineering with computers</jtitle><stitle>Engineering with Computers</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>38</volume><issue>Suppl 1</issue><spage>647</spage><epage>665</epage><pages>647-665</pages><issn>0177-0667</issn><eissn>1435-5663</eissn><abstract>In the present paper, a new trigonometric two-variable shear deformation beam nonlocal strain gradient theory is developed and applied to investigate the combined effects of nonlocal stress and strain gradient on the bending, buckling and free vibration analysis of nanobeams. The model introduces a nonlocal stress field parameter and a length scale parameter to capture the size effect. The governing equations derived are solved employing finite element method using a 3-nodes beam element, developed for this purpose. The predictive capability of the proposed model is shown through illustrative examples for bending, buckling and free vibration of nanobeams. Comparisons with other higher-order shear deformation beam theory are also performed to validate its numerical implementation and assess its accuracy within the nonlocal context.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00366-020-01156-y</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-1403-6683</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0177-0667 |
ispartof | Engineering with computers, 2022-04, Vol.38 (Suppl 1), p.647-665 |
issn | 0177-0667 1435-5663 |
language | eng |
recordid | cdi_proquest_journals_2650970642 |
source | SpringerLink Journals - AutoHoldings |
subjects | Beam theory (structures) Bending Buckling CAE) and Design Calculus of Variations and Optimal Control Optimization Classical Mechanics Computer Science Computer-Aided Engineering (CAD Control Deformation Finite element analysis Finite element method Free vibration Graphene Math. Applications in Chemistry Mathematical and Computational Engineering Mathematical models Original Article Parameters Shear deformation Shear strain Size effects Strain analysis Stress distribution Stress state Systems Theory Vibration analysis Viscoelasticity |
title | Nonlocal strain gradient finite element analysis of nanobeams using two-variable trigonometric shear deformation theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A53%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlocal%20strain%20gradient%20finite%20element%20analysis%20of%20nanobeams%20using%20two-variable%20trigonometric%20shear%20deformation%20theory&rft.jtitle=Engineering%20with%20computers&rft.au=Merzouki,%20Tarek&rft.date=2022-04-01&rft.volume=38&rft.issue=Suppl%201&rft.spage=647&rft.epage=665&rft.pages=647-665&rft.issn=0177-0667&rft.eissn=1435-5663&rft_id=info:doi/10.1007/s00366-020-01156-y&rft_dat=%3Cproquest_cross%3E2650970642%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2650970642&rft_id=info:pmid/&rfr_iscdi=true |