TWO-LAYER STEADY CREEPING THERMOCAPILLARY FLOW IN A THREE-DIMENSIONAL CHANNEL
We study the problem of three-dimensional steady creeping flow of two immiscible liquids in a channel with solid parallel walls, one of which a given temperature distribution is maintained and the other is hear-insulated. Thermocapillary forces act on the flat interface. Temperature in the liquids d...
Gespeichert in:
Veröffentlicht in: | Journal of applied mechanics and technical physics 2022-02, Vol.63 (1), p.82-88 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 88 |
---|---|
container_issue | 1 |
container_start_page | 82 |
container_title | Journal of applied mechanics and technical physics |
container_volume | 63 |
creator | Andreev, V. K. Lemeshkova, E. N. |
description | We study the problem of three-dimensional steady creeping flow of two immiscible liquids in a channel with solid parallel walls, one of which a given temperature distribution is maintained and the other is hear-insulated. Thermocapillary forces act on the flat interface. Temperature in the liquids depends quadratically on the horizontal coordinates, and the velocity field has a special form. The resulting conjugate problem for the Oberbeck–Boussinesq model is inverse and reduces to the system of ten integro-differential equations. The total energy condition on the interface is taken into account. The problem has up to two solutions, and if the heat fluxes are equal, it has one solution. Characteristic flow structures are constructed for each of the solutions. The influence of dimensionless physical and geometric parameters on the flows is investigated. |
doi_str_mv | 10.1134/S0021894422010138 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2650478971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2650478971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-bd4e530263561697198d517b74a092f69176880b7bb16811606219a7f0422def3</originalsourceid><addsrcrecordid>eNp1kE9PwkAUxDdGExH9AN6aeF59b9vun-OmrNBkaUmpIZyaFlojUcAuHPz2LsHEg_H0DvObmbwh5B7hETGMnuYADKWKIsYAAUN5QQYYi5BKzuCSDE4yPenX5Ma5DQAoiWJApuUip1YvTRHMS6NHyyApjJml2TgoJ6aY5omepdbqYhk823wRpFmgveIZOkqnJpuneaZtkEx0lhl7S666-t21dz93SF6eTZlMqM3HaaItXbGIH2izjto4BMbDmCNXApVcxygaEdWgWMcVCi4lNKJpkEtEDpyhqkUH_r1124VD8nDO3fe7z2PrDtVmd-y3vrJiPIZISB_qKTxTq37nXN921b5_-6j7rwqhOq1W_VnNe9jZ4zy7fW373-T_Td8mKGRZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2650478971</pqid></control><display><type>article</type><title>TWO-LAYER STEADY CREEPING THERMOCAPILLARY FLOW IN A THREE-DIMENSIONAL CHANNEL</title><source>SpringerNature Journals</source><creator>Andreev, V. K. ; Lemeshkova, E. N.</creator><creatorcontrib>Andreev, V. K. ; Lemeshkova, E. N.</creatorcontrib><description>We study the problem of three-dimensional steady creeping flow of two immiscible liquids in a channel with solid parallel walls, one of which a given temperature distribution is maintained and the other is hear-insulated. Thermocapillary forces act on the flat interface. Temperature in the liquids depends quadratically on the horizontal coordinates, and the velocity field has a special form. The resulting conjugate problem for the Oberbeck–Boussinesq model is inverse and reduces to the system of ten integro-differential equations. The total energy condition on the interface is taken into account. The problem has up to two solutions, and if the heat fluxes are equal, it has one solution. Characteristic flow structures are constructed for each of the solutions. The influence of dimensionless physical and geometric parameters on the flows is investigated.</description><identifier>ISSN: 0021-8944</identifier><identifier>EISSN: 1573-8620</identifier><identifier>DOI: 10.1134/S0021894422010138</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Applications of Mathematics ; Boussinesq equations ; Classical and Continuum Physics ; Classical Mechanics ; Differential equations ; Fluid- and Aerodynamics ; Heat flux ; Liquids ; Mathematical Modeling and Industrial Mathematics ; Mechanical Engineering ; Physics ; Physics and Astronomy ; Temperature distribution ; Thermocapillary flow ; Thermocapillary force ; Three dimensional flow ; Velocity distribution</subject><ispartof>Journal of applied mechanics and technical physics, 2022-02, Vol.63 (1), p.82-88</ispartof><rights>Pleiades Publishing, Ltd. 2022</rights><rights>Pleiades Publishing, Ltd. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c246t-bd4e530263561697198d517b74a092f69176880b7bb16811606219a7f0422def3</citedby><cites>FETCH-LOGICAL-c246t-bd4e530263561697198d517b74a092f69176880b7bb16811606219a7f0422def3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0021894422010138$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0021894422010138$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Andreev, V. K.</creatorcontrib><creatorcontrib>Lemeshkova, E. N.</creatorcontrib><title>TWO-LAYER STEADY CREEPING THERMOCAPILLARY FLOW IN A THREE-DIMENSIONAL CHANNEL</title><title>Journal of applied mechanics and technical physics</title><addtitle>J Appl Mech Tech Phy</addtitle><description>We study the problem of three-dimensional steady creeping flow of two immiscible liquids in a channel with solid parallel walls, one of which a given temperature distribution is maintained and the other is hear-insulated. Thermocapillary forces act on the flat interface. Temperature in the liquids depends quadratically on the horizontal coordinates, and the velocity field has a special form. The resulting conjugate problem for the Oberbeck–Boussinesq model is inverse and reduces to the system of ten integro-differential equations. The total energy condition on the interface is taken into account. The problem has up to two solutions, and if the heat fluxes are equal, it has one solution. Characteristic flow structures are constructed for each of the solutions. The influence of dimensionless physical and geometric parameters on the flows is investigated.</description><subject>Applications of Mathematics</subject><subject>Boussinesq equations</subject><subject>Classical and Continuum Physics</subject><subject>Classical Mechanics</subject><subject>Differential equations</subject><subject>Fluid- and Aerodynamics</subject><subject>Heat flux</subject><subject>Liquids</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mechanical Engineering</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Temperature distribution</subject><subject>Thermocapillary flow</subject><subject>Thermocapillary force</subject><subject>Three dimensional flow</subject><subject>Velocity distribution</subject><issn>0021-8944</issn><issn>1573-8620</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE9PwkAUxDdGExH9AN6aeF59b9vun-OmrNBkaUmpIZyaFlojUcAuHPz2LsHEg_H0DvObmbwh5B7hETGMnuYADKWKIsYAAUN5QQYYi5BKzuCSDE4yPenX5Ma5DQAoiWJApuUip1YvTRHMS6NHyyApjJml2TgoJ6aY5omepdbqYhk823wRpFmgveIZOkqnJpuneaZtkEx0lhl7S666-t21dz93SF6eTZlMqM3HaaItXbGIH2izjto4BMbDmCNXApVcxygaEdWgWMcVCi4lNKJpkEtEDpyhqkUH_r1124VD8nDO3fe7z2PrDtVmd-y3vrJiPIZISB_qKTxTq37nXN921b5_-6j7rwqhOq1W_VnNe9jZ4zy7fW373-T_Td8mKGRZ</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Andreev, V. K.</creator><creator>Lemeshkova, E. N.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220201</creationdate><title>TWO-LAYER STEADY CREEPING THERMOCAPILLARY FLOW IN A THREE-DIMENSIONAL CHANNEL</title><author>Andreev, V. K. ; Lemeshkova, E. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-bd4e530263561697198d517b74a092f69176880b7bb16811606219a7f0422def3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Boussinesq equations</topic><topic>Classical and Continuum Physics</topic><topic>Classical Mechanics</topic><topic>Differential equations</topic><topic>Fluid- and Aerodynamics</topic><topic>Heat flux</topic><topic>Liquids</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mechanical Engineering</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Temperature distribution</topic><topic>Thermocapillary flow</topic><topic>Thermocapillary force</topic><topic>Three dimensional flow</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andreev, V. K.</creatorcontrib><creatorcontrib>Lemeshkova, E. N.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied mechanics and technical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andreev, V. K.</au><au>Lemeshkova, E. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TWO-LAYER STEADY CREEPING THERMOCAPILLARY FLOW IN A THREE-DIMENSIONAL CHANNEL</atitle><jtitle>Journal of applied mechanics and technical physics</jtitle><stitle>J Appl Mech Tech Phy</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>63</volume><issue>1</issue><spage>82</spage><epage>88</epage><pages>82-88</pages><issn>0021-8944</issn><eissn>1573-8620</eissn><abstract>We study the problem of three-dimensional steady creeping flow of two immiscible liquids in a channel with solid parallel walls, one of which a given temperature distribution is maintained and the other is hear-insulated. Thermocapillary forces act on the flat interface. Temperature in the liquids depends quadratically on the horizontal coordinates, and the velocity field has a special form. The resulting conjugate problem for the Oberbeck–Boussinesq model is inverse and reduces to the system of ten integro-differential equations. The total energy condition on the interface is taken into account. The problem has up to two solutions, and if the heat fluxes are equal, it has one solution. Characteristic flow structures are constructed for each of the solutions. The influence of dimensionless physical and geometric parameters on the flows is investigated.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0021894422010138</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8944 |
ispartof | Journal of applied mechanics and technical physics, 2022-02, Vol.63 (1), p.82-88 |
issn | 0021-8944 1573-8620 |
language | eng |
recordid | cdi_proquest_journals_2650478971 |
source | SpringerNature Journals |
subjects | Applications of Mathematics Boussinesq equations Classical and Continuum Physics Classical Mechanics Differential equations Fluid- and Aerodynamics Heat flux Liquids Mathematical Modeling and Industrial Mathematics Mechanical Engineering Physics Physics and Astronomy Temperature distribution Thermocapillary flow Thermocapillary force Three dimensional flow Velocity distribution |
title | TWO-LAYER STEADY CREEPING THERMOCAPILLARY FLOW IN A THREE-DIMENSIONAL CHANNEL |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A03%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TWO-LAYER%20STEADY%20CREEPING%20THERMOCAPILLARY%20FLOW%20IN%20A%20THREE-DIMENSIONAL%20CHANNEL&rft.jtitle=Journal%20of%20applied%20mechanics%20and%20technical%20physics&rft.au=Andreev,%20V.%20K.&rft.date=2022-02-01&rft.volume=63&rft.issue=1&rft.spage=82&rft.epage=88&rft.pages=82-88&rft.issn=0021-8944&rft.eissn=1573-8620&rft_id=info:doi/10.1134/S0021894422010138&rft_dat=%3Cproquest_cross%3E2650478971%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2650478971&rft_id=info:pmid/&rfr_iscdi=true |