High-resolution thermal face dataset for face and expression recognition
Development of facial recognition or expression recognition algorithms requires input data to thoroughly test the performance of algorithms in various conditions. Researchers are developing various methods to face challenges like illumination, pose and expression changes, as well as facial disguises...
Gespeichert in:
Veröffentlicht in: | Metrology and Measurement systems 2018-01, Vol.25 (2) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Metrology and Measurement systems |
container_volume | 25 |
creator | Kowalski, Marcin Grudzień, Artur |
description | Development of facial recognition or expression recognition algorithms requires input data to thoroughly test the performance of algorithms in various conditions. Researchers are developing various methods to face challenges like illumination, pose and expression changes, as well as facial disguises. In this paper, we propose and establish a dataset of thermal facial images, which contains a set of neutral images in various poses as well as a set of facial images with different posed expressions collected with a thermal infrared camera. Since the properties of face in the thermal domain strongly depend on time, in order to show the impact of aging, collection of the dataset has been repeated and a corresponding set of data is provided. The paper describes the measurement methodology and database structure. We present baseline results of processing using state-of-the-art facial descriptors combined with distance metrics for thermal face reidentification. Three selected local descriptors, a histogram of oriented gradients, local binary patterns and local derivative patterns are used for elementary assessment of the database. The dataset offers a wide range of capabilities – from thermal face recognition to thermal expression recognition. |
doi_str_mv | 10.24425/119566 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2650301425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2650301425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c254t-e25e3bf0c673e42e23aac1adf83478129aac406298ce6ee416f79e38ade73bf03</originalsourceid><addsrcrecordid>eNotkE9LAzEQxYMoWNriV1jwHJ383eQoRd1CwYs9l5idtFvWTU2y4Md3l3qaeY_fmwdDyAODJy4lV8-MWaX1DVlwAUCZlex22sEAtaDgnqxzPgMAU6YGzhakabrjiSbMsR9LF4eqnDB9u74KzmPVuuIylirEdDXc0Fb4e5n4PMMJfTwO3Rxckbvg-ozr_7kk-7fXz01Ddx_v283LjnquZKHIFYqvAF7XAiVHLpzzzLXBCFkbxu0kJWhujUeNKJkOtUVhXIv1nBNL8ni9e0nxZ8RcDuc4pmGqPHCtQACb3iD-AJt8TZc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2650301425</pqid></control><display><type>article</type><title>High-resolution thermal face dataset for face and expression recognition</title><source>DOAJ Directory of Open Access Journals</source><creator>Kowalski, Marcin ; Grudzień, Artur</creator><creatorcontrib>Kowalski, Marcin ; Grudzień, Artur</creatorcontrib><description>Development of facial recognition or expression recognition algorithms requires input data to thoroughly test the performance of algorithms in various conditions. Researchers are developing various methods to face challenges like illumination, pose and expression changes, as well as facial disguises. In this paper, we propose and establish a dataset of thermal facial images, which contains a set of neutral images in various poses as well as a set of facial images with different posed expressions collected with a thermal infrared camera. Since the properties of face in the thermal domain strongly depend on time, in order to show the impact of aging, collection of the dataset has been repeated and a corresponding set of data is provided. The paper describes the measurement methodology and database structure. We present baseline results of processing using state-of-the-art facial descriptors combined with distance metrics for thermal face reidentification. Three selected local descriptors, a histogram of oriented gradients, local binary patterns and local derivative patterns are used for elementary assessment of the database. The dataset offers a wide range of capabilities – from thermal face recognition to thermal expression recognition.</description><identifier>ISSN: 2080-9050</identifier><identifier>EISSN: 2300-1941</identifier><identifier>DOI: 10.24425/119566</identifier><language>eng</language><publisher>Warsaw: Polish Academy of Sciences</publisher><subject>Algorithms ; Datasets ; Face recognition ; Histograms ; Infrared cameras</subject><ispartof>Metrology and Measurement systems, 2018-01, Vol.25 (2)</ispartof><rights>2018. This work is licensed under https://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c254t-e25e3bf0c673e42e23aac1adf83478129aac406298ce6ee416f79e38ade73bf03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,861,27905,27906</link.rule.ids></links><search><creatorcontrib>Kowalski, Marcin</creatorcontrib><creatorcontrib>Grudzień, Artur</creatorcontrib><title>High-resolution thermal face dataset for face and expression recognition</title><title>Metrology and Measurement systems</title><description>Development of facial recognition or expression recognition algorithms requires input data to thoroughly test the performance of algorithms in various conditions. Researchers are developing various methods to face challenges like illumination, pose and expression changes, as well as facial disguises. In this paper, we propose and establish a dataset of thermal facial images, which contains a set of neutral images in various poses as well as a set of facial images with different posed expressions collected with a thermal infrared camera. Since the properties of face in the thermal domain strongly depend on time, in order to show the impact of aging, collection of the dataset has been repeated and a corresponding set of data is provided. The paper describes the measurement methodology and database structure. We present baseline results of processing using state-of-the-art facial descriptors combined with distance metrics for thermal face reidentification. Three selected local descriptors, a histogram of oriented gradients, local binary patterns and local derivative patterns are used for elementary assessment of the database. The dataset offers a wide range of capabilities – from thermal face recognition to thermal expression recognition.</description><subject>Algorithms</subject><subject>Datasets</subject><subject>Face recognition</subject><subject>Histograms</subject><subject>Infrared cameras</subject><issn>2080-9050</issn><issn>2300-1941</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNotkE9LAzEQxYMoWNriV1jwHJ383eQoRd1CwYs9l5idtFvWTU2y4Md3l3qaeY_fmwdDyAODJy4lV8-MWaX1DVlwAUCZlex22sEAtaDgnqxzPgMAU6YGzhakabrjiSbMsR9LF4eqnDB9u74KzmPVuuIylirEdDXc0Fb4e5n4PMMJfTwO3Rxckbvg-ozr_7kk-7fXz01Ddx_v283LjnquZKHIFYqvAF7XAiVHLpzzzLXBCFkbxu0kJWhujUeNKJkOtUVhXIv1nBNL8ni9e0nxZ8RcDuc4pmGqPHCtQACb3iD-AJt8TZc</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Kowalski, Marcin</creator><creator>Grudzień, Artur</creator><general>Polish Academy of Sciences</general><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180101</creationdate><title>High-resolution thermal face dataset for face and expression recognition</title><author>Kowalski, Marcin ; Grudzień, Artur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c254t-e25e3bf0c673e42e23aac1adf83478129aac406298ce6ee416f79e38ade73bf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Datasets</topic><topic>Face recognition</topic><topic>Histograms</topic><topic>Infrared cameras</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kowalski, Marcin</creatorcontrib><creatorcontrib>Grudzień, Artur</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Metrology and Measurement systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kowalski, Marcin</au><au>Grudzień, Artur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-resolution thermal face dataset for face and expression recognition</atitle><jtitle>Metrology and Measurement systems</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>25</volume><issue>2</issue><issn>2080-9050</issn><eissn>2300-1941</eissn><abstract>Development of facial recognition or expression recognition algorithms requires input data to thoroughly test the performance of algorithms in various conditions. Researchers are developing various methods to face challenges like illumination, pose and expression changes, as well as facial disguises. In this paper, we propose and establish a dataset of thermal facial images, which contains a set of neutral images in various poses as well as a set of facial images with different posed expressions collected with a thermal infrared camera. Since the properties of face in the thermal domain strongly depend on time, in order to show the impact of aging, collection of the dataset has been repeated and a corresponding set of data is provided. The paper describes the measurement methodology and database structure. We present baseline results of processing using state-of-the-art facial descriptors combined with distance metrics for thermal face reidentification. Three selected local descriptors, a histogram of oriented gradients, local binary patterns and local derivative patterns are used for elementary assessment of the database. The dataset offers a wide range of capabilities – from thermal face recognition to thermal expression recognition.</abstract><cop>Warsaw</cop><pub>Polish Academy of Sciences</pub><doi>10.24425/119566</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2080-9050 |
ispartof | Metrology and Measurement systems, 2018-01, Vol.25 (2) |
issn | 2080-9050 2300-1941 |
language | eng |
recordid | cdi_proquest_journals_2650301425 |
source | DOAJ Directory of Open Access Journals |
subjects | Algorithms Datasets Face recognition Histograms Infrared cameras |
title | High-resolution thermal face dataset for face and expression recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A34%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-resolution%20thermal%20face%20dataset%20for%20face%20and%20expression%20recognition&rft.jtitle=Metrology%20and%20Measurement%20systems&rft.au=Kowalski,%20Marcin&rft.date=2018-01-01&rft.volume=25&rft.issue=2&rft.issn=2080-9050&rft.eissn=2300-1941&rft_id=info:doi/10.24425/119566&rft_dat=%3Cproquest%3E2650301425%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2650301425&rft_id=info:pmid/&rfr_iscdi=true |