Waveform Control Pulse Magnetization of GdBaCuO Bulk Near Operating Temperature of Our Superconducting Rotating Machine
We have tested our waveform control pulse magnetization with negative feedback (WCPM-NFB) method on a GdBa 2 C 3 O 7-δ (GdBaCuO) high temperature superconducting (HTS) bulk sample, near operating temperatures of superconducting machines. This advanced single pulse field magnetization (PFM) method wa...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2022-06, Vol.32 (4), p.1-5 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 32 |
creator | Caunes, Antomne A. Imamichi, Hayato Kawasumi, Nagisa Izumi, Mitsuru Ida, Tetsuya |
description | We have tested our waveform control pulse magnetization with negative feedback (WCPM-NFB) method on a GdBa 2 C 3 O 7-δ (GdBaCuO) high temperature superconducting (HTS) bulk sample, near operating temperatures of superconducting machines. This advanced single pulse field magnetization (PFM) method was demonstrated to significantly increase the trapped magnetic flux density in the center of the bulk compared to more conventional PFM techniques. The WCPM-NFB method has been further enhanced by modifying the control of the applied pulsed magnetic field. The aim was to adapt the control method to make use of the flux jump in a more efficient way while limiting the heat generation in the bulk. The target magnetic flux density of the PID controller was changed during the pulsed magnetization, allowing the applied magnetic field to be adapted consequently to the change of condition inside the bulk due to the flux jump. A magnetic flux density of about 3 T has been trapped at 50 K in a single pulse using our improved WCPM-NFB method. |
doi_str_mv | 10.1109/TASC.2022.3162809 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2650298411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9743631</ieee_id><sourcerecordid>2650298411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-9387a3cdcb71bdac3bc757bfc7fc8ac963c4f7c39402f941d4261571c9e5bbd93</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhCMEEqXwAIiLJc4pXv8k8bGNoCC1BNEijpbjOCWljYsTg-DpSWjFaUe73-xIEwSXgEcAWNwsx4t0RDAhIwoRSbA4CgbAeRISDvy405hDmBBCT4OzplljDCxhfBB8vapPU1q3RamtW2c36MlvGoPmalWbtvpRbWVrZEs0LSYq9Rma-M07ejTKoWxnXHeuV2hptn_aO9OjmXdo4buNtnXh9R_ybNs9O1f6rarNeXBSqi7o4jCHwcvd7TK9D2fZ9CEdz0JNAdpQ0CRWVBc6jyEvlKa5jnmclzoudaK0iKhmZaypYJiUgkHBSAQ8Bi0Mz_NC0GFwvf-7c_bDm6aVa-td3UVKEnFMRMIAOgr2lHa2aZwp5c5VW-W-JWDZ9yv7fmXfrzz023mu9p7KGPPPi5jRiAL9BYyEeGY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2650298411</pqid></control><display><type>article</type><title>Waveform Control Pulse Magnetization of GdBaCuO Bulk Near Operating Temperature of Our Superconducting Rotating Machine</title><source>IEEE Electronic Library (IEL)</source><creator>Caunes, Antomne A. ; Imamichi, Hayato ; Kawasumi, Nagisa ; Izumi, Mitsuru ; Ida, Tetsuya</creator><creatorcontrib>Caunes, Antomne A. ; Imamichi, Hayato ; Kawasumi, Nagisa ; Izumi, Mitsuru ; Ida, Tetsuya</creatorcontrib><description>We have tested our waveform control pulse magnetization with negative feedback (WCPM-NFB) method on a GdBa 2 C 3 O 7-δ (GdBaCuO) high temperature superconducting (HTS) bulk sample, near operating temperatures of superconducting machines. This advanced single pulse field magnetization (PFM) method was demonstrated to significantly increase the trapped magnetic flux density in the center of the bulk compared to more conventional PFM techniques. The WCPM-NFB method has been further enhanced by modifying the control of the applied pulsed magnetic field. The aim was to adapt the control method to make use of the flux jump in a more efficient way while limiting the heat generation in the bulk. The target magnetic flux density of the PID controller was changed during the pulsed magnetization, allowing the applied magnetic field to be adapted consequently to the change of condition inside the bulk due to the flux jump. A magnetic flux density of about 3 T has been trapped at 50 K in a single pulse using our improved WCPM-NFB method.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2022.3162809</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bulk density ; Control methods ; Cooling ; Feedback amplifiers ; Flux density ; Flux jump ; Heat generation ; High temperature ; high-temperature superconducting bulk ; High-temperature superconductors ; Magnetic fields ; Magnetic flux ; Magnetic flux density ; Magnetism ; Magnetization ; Negative feedback ; Operating temperature ; Proportional integral derivative ; pulsed field magnetization ; Rotating machinery ; Rotating machines ; Superconducting magnets ; Superconductivity ; waveform control ; Waveforms</subject><ispartof>IEEE transactions on applied superconductivity, 2022-06, Vol.32 (4), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-9387a3cdcb71bdac3bc757bfc7fc8ac963c4f7c39402f941d4261571c9e5bbd93</cites><orcidid>0000-0001-9369-730X ; 0000-0001-8157-2198 ; 0000-0003-0317-8907 ; 0000-0002-0410-710X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9743631$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9743631$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Caunes, Antomne A.</creatorcontrib><creatorcontrib>Imamichi, Hayato</creatorcontrib><creatorcontrib>Kawasumi, Nagisa</creatorcontrib><creatorcontrib>Izumi, Mitsuru</creatorcontrib><creatorcontrib>Ida, Tetsuya</creatorcontrib><title>Waveform Control Pulse Magnetization of GdBaCuO Bulk Near Operating Temperature of Our Superconducting Rotating Machine</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>We have tested our waveform control pulse magnetization with negative feedback (WCPM-NFB) method on a GdBa 2 C 3 O 7-δ (GdBaCuO) high temperature superconducting (HTS) bulk sample, near operating temperatures of superconducting machines. This advanced single pulse field magnetization (PFM) method was demonstrated to significantly increase the trapped magnetic flux density in the center of the bulk compared to more conventional PFM techniques. The WCPM-NFB method has been further enhanced by modifying the control of the applied pulsed magnetic field. The aim was to adapt the control method to make use of the flux jump in a more efficient way while limiting the heat generation in the bulk. The target magnetic flux density of the PID controller was changed during the pulsed magnetization, allowing the applied magnetic field to be adapted consequently to the change of condition inside the bulk due to the flux jump. A magnetic flux density of about 3 T has been trapped at 50 K in a single pulse using our improved WCPM-NFB method.</description><subject>Bulk density</subject><subject>Control methods</subject><subject>Cooling</subject><subject>Feedback amplifiers</subject><subject>Flux density</subject><subject>Flux jump</subject><subject>Heat generation</subject><subject>High temperature</subject><subject>high-temperature superconducting bulk</subject><subject>High-temperature superconductors</subject><subject>Magnetic fields</subject><subject>Magnetic flux</subject><subject>Magnetic flux density</subject><subject>Magnetism</subject><subject>Magnetization</subject><subject>Negative feedback</subject><subject>Operating temperature</subject><subject>Proportional integral derivative</subject><subject>pulsed field magnetization</subject><subject>Rotating machinery</subject><subject>Rotating machines</subject><subject>Superconducting magnets</subject><subject>Superconductivity</subject><subject>waveform control</subject><subject>Waveforms</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1OwzAQhCMEEqXwAIiLJc4pXv8k8bGNoCC1BNEijpbjOCWljYsTg-DpSWjFaUe73-xIEwSXgEcAWNwsx4t0RDAhIwoRSbA4CgbAeRISDvy405hDmBBCT4OzplljDCxhfBB8vapPU1q3RamtW2c36MlvGoPmalWbtvpRbWVrZEs0LSYq9Rma-M07ejTKoWxnXHeuV2hptn_aO9OjmXdo4buNtnXh9R_ybNs9O1f6rarNeXBSqi7o4jCHwcvd7TK9D2fZ9CEdz0JNAdpQ0CRWVBc6jyEvlKa5jnmclzoudaK0iKhmZaypYJiUgkHBSAQ8Bi0Mz_NC0GFwvf-7c_bDm6aVa-td3UVKEnFMRMIAOgr2lHa2aZwp5c5VW-W-JWDZ9yv7fmXfrzz023mu9p7KGPPPi5jRiAL9BYyEeGY</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Caunes, Antomne A.</creator><creator>Imamichi, Hayato</creator><creator>Kawasumi, Nagisa</creator><creator>Izumi, Mitsuru</creator><creator>Ida, Tetsuya</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9369-730X</orcidid><orcidid>https://orcid.org/0000-0001-8157-2198</orcidid><orcidid>https://orcid.org/0000-0003-0317-8907</orcidid><orcidid>https://orcid.org/0000-0002-0410-710X</orcidid></search><sort><creationdate>20220601</creationdate><title>Waveform Control Pulse Magnetization of GdBaCuO Bulk Near Operating Temperature of Our Superconducting Rotating Machine</title><author>Caunes, Antomne A. ; Imamichi, Hayato ; Kawasumi, Nagisa ; Izumi, Mitsuru ; Ida, Tetsuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-9387a3cdcb71bdac3bc757bfc7fc8ac963c4f7c39402f941d4261571c9e5bbd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bulk density</topic><topic>Control methods</topic><topic>Cooling</topic><topic>Feedback amplifiers</topic><topic>Flux density</topic><topic>Flux jump</topic><topic>Heat generation</topic><topic>High temperature</topic><topic>high-temperature superconducting bulk</topic><topic>High-temperature superconductors</topic><topic>Magnetic fields</topic><topic>Magnetic flux</topic><topic>Magnetic flux density</topic><topic>Magnetism</topic><topic>Magnetization</topic><topic>Negative feedback</topic><topic>Operating temperature</topic><topic>Proportional integral derivative</topic><topic>pulsed field magnetization</topic><topic>Rotating machinery</topic><topic>Rotating machines</topic><topic>Superconducting magnets</topic><topic>Superconductivity</topic><topic>waveform control</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caunes, Antomne A.</creatorcontrib><creatorcontrib>Imamichi, Hayato</creatorcontrib><creatorcontrib>Kawasumi, Nagisa</creatorcontrib><creatorcontrib>Izumi, Mitsuru</creatorcontrib><creatorcontrib>Ida, Tetsuya</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Caunes, Antomne A.</au><au>Imamichi, Hayato</au><au>Kawasumi, Nagisa</au><au>Izumi, Mitsuru</au><au>Ida, Tetsuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Waveform Control Pulse Magnetization of GdBaCuO Bulk Near Operating Temperature of Our Superconducting Rotating Machine</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>32</volume><issue>4</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>We have tested our waveform control pulse magnetization with negative feedback (WCPM-NFB) method on a GdBa 2 C 3 O 7-δ (GdBaCuO) high temperature superconducting (HTS) bulk sample, near operating temperatures of superconducting machines. This advanced single pulse field magnetization (PFM) method was demonstrated to significantly increase the trapped magnetic flux density in the center of the bulk compared to more conventional PFM techniques. The WCPM-NFB method has been further enhanced by modifying the control of the applied pulsed magnetic field. The aim was to adapt the control method to make use of the flux jump in a more efficient way while limiting the heat generation in the bulk. The target magnetic flux density of the PID controller was changed during the pulsed magnetization, allowing the applied magnetic field to be adapted consequently to the change of condition inside the bulk due to the flux jump. A magnetic flux density of about 3 T has been trapped at 50 K in a single pulse using our improved WCPM-NFB method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2022.3162809</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-9369-730X</orcidid><orcidid>https://orcid.org/0000-0001-8157-2198</orcidid><orcidid>https://orcid.org/0000-0003-0317-8907</orcidid><orcidid>https://orcid.org/0000-0002-0410-710X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2022-06, Vol.32 (4), p.1-5 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_proquest_journals_2650298411 |
source | IEEE Electronic Library (IEL) |
subjects | Bulk density Control methods Cooling Feedback amplifiers Flux density Flux jump Heat generation High temperature high-temperature superconducting bulk High-temperature superconductors Magnetic fields Magnetic flux Magnetic flux density Magnetism Magnetization Negative feedback Operating temperature Proportional integral derivative pulsed field magnetization Rotating machinery Rotating machines Superconducting magnets Superconductivity waveform control Waveforms |
title | Waveform Control Pulse Magnetization of GdBaCuO Bulk Near Operating Temperature of Our Superconducting Rotating Machine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T00%3A47%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Waveform%20Control%20Pulse%20Magnetization%20of%20GdBaCuO%20Bulk%20Near%20Operating%20Temperature%20of%20Our%20Superconducting%20Rotating%20Machine&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Caunes,%20Antomne%20A.&rft.date=2022-06-01&rft.volume=32&rft.issue=4&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2022.3162809&rft_dat=%3Cproquest_RIE%3E2650298411%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2650298411&rft_id=info:pmid/&rft_ieee_id=9743631&rfr_iscdi=true |