Waveform Control Pulse Magnetization of GdBaCuO Bulk Near Operating Temperature of Our Superconducting Rotating Machine

We have tested our waveform control pulse magnetization with negative feedback (WCPM-NFB) method on a GdBa 2 C 3 O 7-δ (GdBaCuO) high temperature superconducting (HTS) bulk sample, near operating temperatures of superconducting machines. This advanced single pulse field magnetization (PFM) method wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2022-06, Vol.32 (4), p.1-5
Hauptverfasser: Caunes, Antomne A., Imamichi, Hayato, Kawasumi, Nagisa, Izumi, Mitsuru, Ida, Tetsuya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue 4
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 32
creator Caunes, Antomne A.
Imamichi, Hayato
Kawasumi, Nagisa
Izumi, Mitsuru
Ida, Tetsuya
description We have tested our waveform control pulse magnetization with negative feedback (WCPM-NFB) method on a GdBa 2 C 3 O 7-δ (GdBaCuO) high temperature superconducting (HTS) bulk sample, near operating temperatures of superconducting machines. This advanced single pulse field magnetization (PFM) method was demonstrated to significantly increase the trapped magnetic flux density in the center of the bulk compared to more conventional PFM techniques. The WCPM-NFB method has been further enhanced by modifying the control of the applied pulsed magnetic field. The aim was to adapt the control method to make use of the flux jump in a more efficient way while limiting the heat generation in the bulk. The target magnetic flux density of the PID controller was changed during the pulsed magnetization, allowing the applied magnetic field to be adapted consequently to the change of condition inside the bulk due to the flux jump. A magnetic flux density of about 3 T has been trapped at 50 K in a single pulse using our improved WCPM-NFB method.
doi_str_mv 10.1109/TASC.2022.3162809
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2650298411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9743631</ieee_id><sourcerecordid>2650298411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-9387a3cdcb71bdac3bc757bfc7fc8ac963c4f7c39402f941d4261571c9e5bbd93</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhCMEEqXwAIiLJc4pXv8k8bGNoCC1BNEijpbjOCWljYsTg-DpSWjFaUe73-xIEwSXgEcAWNwsx4t0RDAhIwoRSbA4CgbAeRISDvy405hDmBBCT4OzplljDCxhfBB8vapPU1q3RamtW2c36MlvGoPmalWbtvpRbWVrZEs0LSYq9Rma-M07ejTKoWxnXHeuV2hptn_aO9OjmXdo4buNtnXh9R_ybNs9O1f6rarNeXBSqi7o4jCHwcvd7TK9D2fZ9CEdz0JNAdpQ0CRWVBc6jyEvlKa5jnmclzoudaK0iKhmZaypYJiUgkHBSAQ8Bi0Mz_NC0GFwvf-7c_bDm6aVa-td3UVKEnFMRMIAOgr2lHa2aZwp5c5VW-W-JWDZ9yv7fmXfrzz023mu9p7KGPPPi5jRiAL9BYyEeGY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2650298411</pqid></control><display><type>article</type><title>Waveform Control Pulse Magnetization of GdBaCuO Bulk Near Operating Temperature of Our Superconducting Rotating Machine</title><source>IEEE Electronic Library (IEL)</source><creator>Caunes, Antomne A. ; Imamichi, Hayato ; Kawasumi, Nagisa ; Izumi, Mitsuru ; Ida, Tetsuya</creator><creatorcontrib>Caunes, Antomne A. ; Imamichi, Hayato ; Kawasumi, Nagisa ; Izumi, Mitsuru ; Ida, Tetsuya</creatorcontrib><description>We have tested our waveform control pulse magnetization with negative feedback (WCPM-NFB) method on a GdBa 2 C 3 O 7-δ (GdBaCuO) high temperature superconducting (HTS) bulk sample, near operating temperatures of superconducting machines. This advanced single pulse field magnetization (PFM) method was demonstrated to significantly increase the trapped magnetic flux density in the center of the bulk compared to more conventional PFM techniques. The WCPM-NFB method has been further enhanced by modifying the control of the applied pulsed magnetic field. The aim was to adapt the control method to make use of the flux jump in a more efficient way while limiting the heat generation in the bulk. The target magnetic flux density of the PID controller was changed during the pulsed magnetization, allowing the applied magnetic field to be adapted consequently to the change of condition inside the bulk due to the flux jump. A magnetic flux density of about 3 T has been trapped at 50 K in a single pulse using our improved WCPM-NFB method.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2022.3162809</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bulk density ; Control methods ; Cooling ; Feedback amplifiers ; Flux density ; Flux jump ; Heat generation ; High temperature ; high-temperature superconducting bulk ; High-temperature superconductors ; Magnetic fields ; Magnetic flux ; Magnetic flux density ; Magnetism ; Magnetization ; Negative feedback ; Operating temperature ; Proportional integral derivative ; pulsed field magnetization ; Rotating machinery ; Rotating machines ; Superconducting magnets ; Superconductivity ; waveform control ; Waveforms</subject><ispartof>IEEE transactions on applied superconductivity, 2022-06, Vol.32 (4), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-9387a3cdcb71bdac3bc757bfc7fc8ac963c4f7c39402f941d4261571c9e5bbd93</cites><orcidid>0000-0001-9369-730X ; 0000-0001-8157-2198 ; 0000-0003-0317-8907 ; 0000-0002-0410-710X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9743631$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9743631$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Caunes, Antomne A.</creatorcontrib><creatorcontrib>Imamichi, Hayato</creatorcontrib><creatorcontrib>Kawasumi, Nagisa</creatorcontrib><creatorcontrib>Izumi, Mitsuru</creatorcontrib><creatorcontrib>Ida, Tetsuya</creatorcontrib><title>Waveform Control Pulse Magnetization of GdBaCuO Bulk Near Operating Temperature of Our Superconducting Rotating Machine</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>We have tested our waveform control pulse magnetization with negative feedback (WCPM-NFB) method on a GdBa 2 C 3 O 7-δ (GdBaCuO) high temperature superconducting (HTS) bulk sample, near operating temperatures of superconducting machines. This advanced single pulse field magnetization (PFM) method was demonstrated to significantly increase the trapped magnetic flux density in the center of the bulk compared to more conventional PFM techniques. The WCPM-NFB method has been further enhanced by modifying the control of the applied pulsed magnetic field. The aim was to adapt the control method to make use of the flux jump in a more efficient way while limiting the heat generation in the bulk. The target magnetic flux density of the PID controller was changed during the pulsed magnetization, allowing the applied magnetic field to be adapted consequently to the change of condition inside the bulk due to the flux jump. A magnetic flux density of about 3 T has been trapped at 50 K in a single pulse using our improved WCPM-NFB method.</description><subject>Bulk density</subject><subject>Control methods</subject><subject>Cooling</subject><subject>Feedback amplifiers</subject><subject>Flux density</subject><subject>Flux jump</subject><subject>Heat generation</subject><subject>High temperature</subject><subject>high-temperature superconducting bulk</subject><subject>High-temperature superconductors</subject><subject>Magnetic fields</subject><subject>Magnetic flux</subject><subject>Magnetic flux density</subject><subject>Magnetism</subject><subject>Magnetization</subject><subject>Negative feedback</subject><subject>Operating temperature</subject><subject>Proportional integral derivative</subject><subject>pulsed field magnetization</subject><subject>Rotating machinery</subject><subject>Rotating machines</subject><subject>Superconducting magnets</subject><subject>Superconductivity</subject><subject>waveform control</subject><subject>Waveforms</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1OwzAQhCMEEqXwAIiLJc4pXv8k8bGNoCC1BNEijpbjOCWljYsTg-DpSWjFaUe73-xIEwSXgEcAWNwsx4t0RDAhIwoRSbA4CgbAeRISDvy405hDmBBCT4OzplljDCxhfBB8vapPU1q3RamtW2c36MlvGoPmalWbtvpRbWVrZEs0LSYq9Rma-M07ejTKoWxnXHeuV2hptn_aO9OjmXdo4buNtnXh9R_ybNs9O1f6rarNeXBSqi7o4jCHwcvd7TK9D2fZ9CEdz0JNAdpQ0CRWVBc6jyEvlKa5jnmclzoudaK0iKhmZaypYJiUgkHBSAQ8Bi0Mz_NC0GFwvf-7c_bDm6aVa-td3UVKEnFMRMIAOgr2lHa2aZwp5c5VW-W-JWDZ9yv7fmXfrzz023mu9p7KGPPPi5jRiAL9BYyEeGY</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Caunes, Antomne A.</creator><creator>Imamichi, Hayato</creator><creator>Kawasumi, Nagisa</creator><creator>Izumi, Mitsuru</creator><creator>Ida, Tetsuya</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9369-730X</orcidid><orcidid>https://orcid.org/0000-0001-8157-2198</orcidid><orcidid>https://orcid.org/0000-0003-0317-8907</orcidid><orcidid>https://orcid.org/0000-0002-0410-710X</orcidid></search><sort><creationdate>20220601</creationdate><title>Waveform Control Pulse Magnetization of GdBaCuO Bulk Near Operating Temperature of Our Superconducting Rotating Machine</title><author>Caunes, Antomne A. ; Imamichi, Hayato ; Kawasumi, Nagisa ; Izumi, Mitsuru ; Ida, Tetsuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-9387a3cdcb71bdac3bc757bfc7fc8ac963c4f7c39402f941d4261571c9e5bbd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bulk density</topic><topic>Control methods</topic><topic>Cooling</topic><topic>Feedback amplifiers</topic><topic>Flux density</topic><topic>Flux jump</topic><topic>Heat generation</topic><topic>High temperature</topic><topic>high-temperature superconducting bulk</topic><topic>High-temperature superconductors</topic><topic>Magnetic fields</topic><topic>Magnetic flux</topic><topic>Magnetic flux density</topic><topic>Magnetism</topic><topic>Magnetization</topic><topic>Negative feedback</topic><topic>Operating temperature</topic><topic>Proportional integral derivative</topic><topic>pulsed field magnetization</topic><topic>Rotating machinery</topic><topic>Rotating machines</topic><topic>Superconducting magnets</topic><topic>Superconductivity</topic><topic>waveform control</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caunes, Antomne A.</creatorcontrib><creatorcontrib>Imamichi, Hayato</creatorcontrib><creatorcontrib>Kawasumi, Nagisa</creatorcontrib><creatorcontrib>Izumi, Mitsuru</creatorcontrib><creatorcontrib>Ida, Tetsuya</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Caunes, Antomne A.</au><au>Imamichi, Hayato</au><au>Kawasumi, Nagisa</au><au>Izumi, Mitsuru</au><au>Ida, Tetsuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Waveform Control Pulse Magnetization of GdBaCuO Bulk Near Operating Temperature of Our Superconducting Rotating Machine</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>32</volume><issue>4</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>We have tested our waveform control pulse magnetization with negative feedback (WCPM-NFB) method on a GdBa 2 C 3 O 7-δ (GdBaCuO) high temperature superconducting (HTS) bulk sample, near operating temperatures of superconducting machines. This advanced single pulse field magnetization (PFM) method was demonstrated to significantly increase the trapped magnetic flux density in the center of the bulk compared to more conventional PFM techniques. The WCPM-NFB method has been further enhanced by modifying the control of the applied pulsed magnetic field. The aim was to adapt the control method to make use of the flux jump in a more efficient way while limiting the heat generation in the bulk. The target magnetic flux density of the PID controller was changed during the pulsed magnetization, allowing the applied magnetic field to be adapted consequently to the change of condition inside the bulk due to the flux jump. A magnetic flux density of about 3 T has been trapped at 50 K in a single pulse using our improved WCPM-NFB method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2022.3162809</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-9369-730X</orcidid><orcidid>https://orcid.org/0000-0001-8157-2198</orcidid><orcidid>https://orcid.org/0000-0003-0317-8907</orcidid><orcidid>https://orcid.org/0000-0002-0410-710X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2022-06, Vol.32 (4), p.1-5
issn 1051-8223
1558-2515
language eng
recordid cdi_proquest_journals_2650298411
source IEEE Electronic Library (IEL)
subjects Bulk density
Control methods
Cooling
Feedback amplifiers
Flux density
Flux jump
Heat generation
High temperature
high-temperature superconducting bulk
High-temperature superconductors
Magnetic fields
Magnetic flux
Magnetic flux density
Magnetism
Magnetization
Negative feedback
Operating temperature
Proportional integral derivative
pulsed field magnetization
Rotating machinery
Rotating machines
Superconducting magnets
Superconductivity
waveform control
Waveforms
title Waveform Control Pulse Magnetization of GdBaCuO Bulk Near Operating Temperature of Our Superconducting Rotating Machine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T00%3A47%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Waveform%20Control%20Pulse%20Magnetization%20of%20GdBaCuO%20Bulk%20Near%20Operating%20Temperature%20of%20Our%20Superconducting%20Rotating%20Machine&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Caunes,%20Antomne%20A.&rft.date=2022-06-01&rft.volume=32&rft.issue=4&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2022.3162809&rft_dat=%3Cproquest_RIE%3E2650298411%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2650298411&rft_id=info:pmid/&rft_ieee_id=9743631&rfr_iscdi=true