Soft Sensor Design Using Multi-State Dependent Parameter Methodology Based on Generalized Random Walk Method
The main problem of developing data-driven soft sensors is the existence of contamination (i.e., outliers) and missing values in the industrial real-time data. In this paper, a new soft sensor modeling method has been extended using a generalized random walk model (GRW) in order to access a robust e...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2022-04, Vol.22 (8), p.7888-7901 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7901 |
---|---|
container_issue | 8 |
container_start_page | 7888 |
container_title | IEEE sensors journal |
container_volume | 22 |
creator | Dastjerd, Fereshte Tavakoli Sadeghi, Jafar Shahraki, Farhad Khalilipour, Mir Mohammad Bidar, Bahareh |
description | The main problem of developing data-driven soft sensors is the existence of contamination (i.e., outliers) and missing values in the industrial real-time data. In this paper, a new soft sensor modeling method has been extended using a generalized random walk model (GRW) in order to access a robust estimation of parameters in the presence of missing data and outliers. The method termed as generalized random walk-multi-state-dependent parameter (GRW-MSDP) was established based on MSDP models. The model parameters are estimated in multivariable state space by employing the Kalman filter (KF) and fixed-interval smoothing (FIS) algorithms. The Kalman filter has been applied to identify the best state estimation values and reduce the effect of outliers by assigning low weight to them. Although in the optimization of KF hyper-parameters the missing values are not taken into account, the FIS algorithm implements a predictor-corrector type estimator to handle the missing values. The prediction step of FIS can be used for interpolation directly without parameterization. The main privilege of the GRW-MSDP method is the not necessity of data pre-processing for fitting the best models. A simulation case and an industrial debutanizer column are utilized to illustrate the effectiveness and advantages of the proposed method. Results indicate that the non-linearity of the process can be addressed under this modeling method using fewer input variables and the change of the process is also well-tracked when missing values exist in the time series data. In addition, the GRW-MSDP method obtains significant improvements in the smoothing of parameters. |
doi_str_mv | 10.1109/JSEN.2022.3147306 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2650297424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9695457</ieee_id><sourcerecordid>2650297424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c208t-b3046ac99e592e8db6c5651ce05eb5fa976269f026837b223929d76b19e1a0f93</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRSMEEqXwAYiNJdYpfsR2vORRCqgFRKhgFznJpKSkdrHdRfl6ErViNTOac2ekE0XnBI8IwerqKRs_jyimdMRIIhkWB9GAcJ7GRCbpYd8zHCdMfh5HJ94vMSZKcjmI2szWAWVgvHXoDnyzMGjuG7NAs00bmjgLOkC3WIOpwAT0qp1eQQCHZhC-bGVbu9iiG-2hQtagCRhwum1-u_FNm8qu0Iduv_fwaXRU69bD2b4Oo_n9-P32IZ6-TB5vr6dxSXEa4oLhROhSKeCKQloVouSCkxIwh4LXWklBhaoxFSmTBaVMUVVJURAFRONasWF0ubu7dvZnAz7kS7txpnuZU8ExVTKhSUeRHVU6672DOl-7ZqXdNic476XmvdS8l5rvpXaZi12mAYB_XgnFEy7ZH7dbcuU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2650297424</pqid></control><display><type>article</type><title>Soft Sensor Design Using Multi-State Dependent Parameter Methodology Based on Generalized Random Walk Method</title><source>IEEE Electronic Library (IEL)</source><creator>Dastjerd, Fereshte Tavakoli ; Sadeghi, Jafar ; Shahraki, Farhad ; Khalilipour, Mir Mohammad ; Bidar, Bahareh</creator><creatorcontrib>Dastjerd, Fereshte Tavakoli ; Sadeghi, Jafar ; Shahraki, Farhad ; Khalilipour, Mir Mohammad ; Bidar, Bahareh</creatorcontrib><description>The main problem of developing data-driven soft sensors is the existence of contamination (i.e., outliers) and missing values in the industrial real-time data. In this paper, a new soft sensor modeling method has been extended using a generalized random walk model (GRW) in order to access a robust estimation of parameters in the presence of missing data and outliers. The method termed as generalized random walk-multi-state-dependent parameter (GRW-MSDP) was established based on MSDP models. The model parameters are estimated in multivariable state space by employing the Kalman filter (KF) and fixed-interval smoothing (FIS) algorithms. The Kalman filter has been applied to identify the best state estimation values and reduce the effect of outliers by assigning low weight to them. Although in the optimization of KF hyper-parameters the missing values are not taken into account, the FIS algorithm implements a predictor-corrector type estimator to handle the missing values. The prediction step of FIS can be used for interpolation directly without parameterization. The main privilege of the GRW-MSDP method is the not necessity of data pre-processing for fitting the best models. A simulation case and an industrial debutanizer column are utilized to illustrate the effectiveness and advantages of the proposed method. Results indicate that the non-linearity of the process can be addressed under this modeling method using fewer input variables and the change of the process is also well-tracked when missing values exist in the time series data. In addition, the GRW-MSDP method obtains significant improvements in the smoothing of parameters.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2022.3147306</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Algorithms ; Data analysis ; Data models ; debutanizer column ; Design parameters ; fixed interval smoothing ; generalized random walk ; Interpolation ; Kalman filter ; Kalman filters ; Mathematical models ; Missing data ; Modelling ; multi-state dependent parameter ; Optimization ; Outliers (statistics) ; Parameter estimation ; Parameter robustness ; Parameterization ; Predictor-corrector methods ; Random walk ; Sensors ; Smoothing ; Soft sensor ; Soft sensors ; Sorting ; State estimation</subject><ispartof>IEEE sensors journal, 2022-04, Vol.22 (8), p.7888-7901</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c208t-b3046ac99e592e8db6c5651ce05eb5fa976269f026837b223929d76b19e1a0f93</citedby><cites>FETCH-LOGICAL-c208t-b3046ac99e592e8db6c5651ce05eb5fa976269f026837b223929d76b19e1a0f93</cites><orcidid>0000-0002-1890-1515 ; 0000-0002-3450-2979 ; 0000-0002-3734-3336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9695457$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9695457$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dastjerd, Fereshte Tavakoli</creatorcontrib><creatorcontrib>Sadeghi, Jafar</creatorcontrib><creatorcontrib>Shahraki, Farhad</creatorcontrib><creatorcontrib>Khalilipour, Mir Mohammad</creatorcontrib><creatorcontrib>Bidar, Bahareh</creatorcontrib><title>Soft Sensor Design Using Multi-State Dependent Parameter Methodology Based on Generalized Random Walk Method</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>The main problem of developing data-driven soft sensors is the existence of contamination (i.e., outliers) and missing values in the industrial real-time data. In this paper, a new soft sensor modeling method has been extended using a generalized random walk model (GRW) in order to access a robust estimation of parameters in the presence of missing data and outliers. The method termed as generalized random walk-multi-state-dependent parameter (GRW-MSDP) was established based on MSDP models. The model parameters are estimated in multivariable state space by employing the Kalman filter (KF) and fixed-interval smoothing (FIS) algorithms. The Kalman filter has been applied to identify the best state estimation values and reduce the effect of outliers by assigning low weight to them. Although in the optimization of KF hyper-parameters the missing values are not taken into account, the FIS algorithm implements a predictor-corrector type estimator to handle the missing values. The prediction step of FIS can be used for interpolation directly without parameterization. The main privilege of the GRW-MSDP method is the not necessity of data pre-processing for fitting the best models. A simulation case and an industrial debutanizer column are utilized to illustrate the effectiveness and advantages of the proposed method. Results indicate that the non-linearity of the process can be addressed under this modeling method using fewer input variables and the change of the process is also well-tracked when missing values exist in the time series data. In addition, the GRW-MSDP method obtains significant improvements in the smoothing of parameters.</description><subject>Adaptation models</subject><subject>Algorithms</subject><subject>Data analysis</subject><subject>Data models</subject><subject>debutanizer column</subject><subject>Design parameters</subject><subject>fixed interval smoothing</subject><subject>generalized random walk</subject><subject>Interpolation</subject><subject>Kalman filter</subject><subject>Kalman filters</subject><subject>Mathematical models</subject><subject>Missing data</subject><subject>Modelling</subject><subject>multi-state dependent parameter</subject><subject>Optimization</subject><subject>Outliers (statistics)</subject><subject>Parameter estimation</subject><subject>Parameter robustness</subject><subject>Parameterization</subject><subject>Predictor-corrector methods</subject><subject>Random walk</subject><subject>Sensors</subject><subject>Smoothing</subject><subject>Soft sensor</subject><subject>Soft sensors</subject><subject>Sorting</subject><subject>State estimation</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRSMEEqXwAYiNJdYpfsR2vORRCqgFRKhgFznJpKSkdrHdRfl6ErViNTOac2ekE0XnBI8IwerqKRs_jyimdMRIIhkWB9GAcJ7GRCbpYd8zHCdMfh5HJ94vMSZKcjmI2szWAWVgvHXoDnyzMGjuG7NAs00bmjgLOkC3WIOpwAT0qp1eQQCHZhC-bGVbu9iiG-2hQtagCRhwum1-u_FNm8qu0Iduv_fwaXRU69bD2b4Oo_n9-P32IZ6-TB5vr6dxSXEa4oLhROhSKeCKQloVouSCkxIwh4LXWklBhaoxFSmTBaVMUVVJURAFRONasWF0ubu7dvZnAz7kS7txpnuZU8ExVTKhSUeRHVU6672DOl-7ZqXdNic476XmvdS8l5rvpXaZi12mAYB_XgnFEy7ZH7dbcuU</recordid><startdate>20220415</startdate><enddate>20220415</enddate><creator>Dastjerd, Fereshte Tavakoli</creator><creator>Sadeghi, Jafar</creator><creator>Shahraki, Farhad</creator><creator>Khalilipour, Mir Mohammad</creator><creator>Bidar, Bahareh</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1890-1515</orcidid><orcidid>https://orcid.org/0000-0002-3450-2979</orcidid><orcidid>https://orcid.org/0000-0002-3734-3336</orcidid></search><sort><creationdate>20220415</creationdate><title>Soft Sensor Design Using Multi-State Dependent Parameter Methodology Based on Generalized Random Walk Method</title><author>Dastjerd, Fereshte Tavakoli ; Sadeghi, Jafar ; Shahraki, Farhad ; Khalilipour, Mir Mohammad ; Bidar, Bahareh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c208t-b3046ac99e592e8db6c5651ce05eb5fa976269f026837b223929d76b19e1a0f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation models</topic><topic>Algorithms</topic><topic>Data analysis</topic><topic>Data models</topic><topic>debutanizer column</topic><topic>Design parameters</topic><topic>fixed interval smoothing</topic><topic>generalized random walk</topic><topic>Interpolation</topic><topic>Kalman filter</topic><topic>Kalman filters</topic><topic>Mathematical models</topic><topic>Missing data</topic><topic>Modelling</topic><topic>multi-state dependent parameter</topic><topic>Optimization</topic><topic>Outliers (statistics)</topic><topic>Parameter estimation</topic><topic>Parameter robustness</topic><topic>Parameterization</topic><topic>Predictor-corrector methods</topic><topic>Random walk</topic><topic>Sensors</topic><topic>Smoothing</topic><topic>Soft sensor</topic><topic>Soft sensors</topic><topic>Sorting</topic><topic>State estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dastjerd, Fereshte Tavakoli</creatorcontrib><creatorcontrib>Sadeghi, Jafar</creatorcontrib><creatorcontrib>Shahraki, Farhad</creatorcontrib><creatorcontrib>Khalilipour, Mir Mohammad</creatorcontrib><creatorcontrib>Bidar, Bahareh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dastjerd, Fereshte Tavakoli</au><au>Sadeghi, Jafar</au><au>Shahraki, Farhad</au><au>Khalilipour, Mir Mohammad</au><au>Bidar, Bahareh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soft Sensor Design Using Multi-State Dependent Parameter Methodology Based on Generalized Random Walk Method</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2022-04-15</date><risdate>2022</risdate><volume>22</volume><issue>8</issue><spage>7888</spage><epage>7901</epage><pages>7888-7901</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>The main problem of developing data-driven soft sensors is the existence of contamination (i.e., outliers) and missing values in the industrial real-time data. In this paper, a new soft sensor modeling method has been extended using a generalized random walk model (GRW) in order to access a robust estimation of parameters in the presence of missing data and outliers. The method termed as generalized random walk-multi-state-dependent parameter (GRW-MSDP) was established based on MSDP models. The model parameters are estimated in multivariable state space by employing the Kalman filter (KF) and fixed-interval smoothing (FIS) algorithms. The Kalman filter has been applied to identify the best state estimation values and reduce the effect of outliers by assigning low weight to them. Although in the optimization of KF hyper-parameters the missing values are not taken into account, the FIS algorithm implements a predictor-corrector type estimator to handle the missing values. The prediction step of FIS can be used for interpolation directly without parameterization. The main privilege of the GRW-MSDP method is the not necessity of data pre-processing for fitting the best models. A simulation case and an industrial debutanizer column are utilized to illustrate the effectiveness and advantages of the proposed method. Results indicate that the non-linearity of the process can be addressed under this modeling method using fewer input variables and the change of the process is also well-tracked when missing values exist in the time series data. In addition, the GRW-MSDP method obtains significant improvements in the smoothing of parameters.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2022.3147306</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1890-1515</orcidid><orcidid>https://orcid.org/0000-0002-3450-2979</orcidid><orcidid>https://orcid.org/0000-0002-3734-3336</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2022-04, Vol.22 (8), p.7888-7901 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_proquest_journals_2650297424 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation models Algorithms Data analysis Data models debutanizer column Design parameters fixed interval smoothing generalized random walk Interpolation Kalman filter Kalman filters Mathematical models Missing data Modelling multi-state dependent parameter Optimization Outliers (statistics) Parameter estimation Parameter robustness Parameterization Predictor-corrector methods Random walk Sensors Smoothing Soft sensor Soft sensors Sorting State estimation |
title | Soft Sensor Design Using Multi-State Dependent Parameter Methodology Based on Generalized Random Walk Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A09%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soft%20Sensor%20Design%20Using%20Multi-State%20Dependent%20Parameter%20Methodology%20Based%20on%20Generalized%20Random%20Walk%20Method&rft.jtitle=IEEE%20sensors%20journal&rft.au=Dastjerd,%20Fereshte%20Tavakoli&rft.date=2022-04-15&rft.volume=22&rft.issue=8&rft.spage=7888&rft.epage=7901&rft.pages=7888-7901&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2022.3147306&rft_dat=%3Cproquest_RIE%3E2650297424%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2650297424&rft_id=info:pmid/&rft_ieee_id=9695457&rfr_iscdi=true |