Soft Sensor Design Using Multi-State Dependent Parameter Methodology Based on Generalized Random Walk Method

The main problem of developing data-driven soft sensors is the existence of contamination (i.e., outliers) and missing values in the industrial real-time data. In this paper, a new soft sensor modeling method has been extended using a generalized random walk model (GRW) in order to access a robust e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2022-04, Vol.22 (8), p.7888-7901
Hauptverfasser: Dastjerd, Fereshte Tavakoli, Sadeghi, Jafar, Shahraki, Farhad, Khalilipour, Mir Mohammad, Bidar, Bahareh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7901
container_issue 8
container_start_page 7888
container_title IEEE sensors journal
container_volume 22
creator Dastjerd, Fereshte Tavakoli
Sadeghi, Jafar
Shahraki, Farhad
Khalilipour, Mir Mohammad
Bidar, Bahareh
description The main problem of developing data-driven soft sensors is the existence of contamination (i.e., outliers) and missing values in the industrial real-time data. In this paper, a new soft sensor modeling method has been extended using a generalized random walk model (GRW) in order to access a robust estimation of parameters in the presence of missing data and outliers. The method termed as generalized random walk-multi-state-dependent parameter (GRW-MSDP) was established based on MSDP models. The model parameters are estimated in multivariable state space by employing the Kalman filter (KF) and fixed-interval smoothing (FIS) algorithms. The Kalman filter has been applied to identify the best state estimation values and reduce the effect of outliers by assigning low weight to them. Although in the optimization of KF hyper-parameters the missing values are not taken into account, the FIS algorithm implements a predictor-corrector type estimator to handle the missing values. The prediction step of FIS can be used for interpolation directly without parameterization. The main privilege of the GRW-MSDP method is the not necessity of data pre-processing for fitting the best models. A simulation case and an industrial debutanizer column are utilized to illustrate the effectiveness and advantages of the proposed method. Results indicate that the non-linearity of the process can be addressed under this modeling method using fewer input variables and the change of the process is also well-tracked when missing values exist in the time series data. In addition, the GRW-MSDP method obtains significant improvements in the smoothing of parameters.
doi_str_mv 10.1109/JSEN.2022.3147306
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2650297424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9695457</ieee_id><sourcerecordid>2650297424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c208t-b3046ac99e592e8db6c5651ce05eb5fa976269f026837b223929d76b19e1a0f93</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRSMEEqXwAYiNJdYpfsR2vORRCqgFRKhgFznJpKSkdrHdRfl6ErViNTOac2ekE0XnBI8IwerqKRs_jyimdMRIIhkWB9GAcJ7GRCbpYd8zHCdMfh5HJ94vMSZKcjmI2szWAWVgvHXoDnyzMGjuG7NAs00bmjgLOkC3WIOpwAT0qp1eQQCHZhC-bGVbu9iiG-2hQtagCRhwum1-u_FNm8qu0Iduv_fwaXRU69bD2b4Oo_n9-P32IZ6-TB5vr6dxSXEa4oLhROhSKeCKQloVouSCkxIwh4LXWklBhaoxFSmTBaVMUVVJURAFRONasWF0ubu7dvZnAz7kS7txpnuZU8ExVTKhSUeRHVU6672DOl-7ZqXdNic476XmvdS8l5rvpXaZi12mAYB_XgnFEy7ZH7dbcuU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2650297424</pqid></control><display><type>article</type><title>Soft Sensor Design Using Multi-State Dependent Parameter Methodology Based on Generalized Random Walk Method</title><source>IEEE Electronic Library (IEL)</source><creator>Dastjerd, Fereshte Tavakoli ; Sadeghi, Jafar ; Shahraki, Farhad ; Khalilipour, Mir Mohammad ; Bidar, Bahareh</creator><creatorcontrib>Dastjerd, Fereshte Tavakoli ; Sadeghi, Jafar ; Shahraki, Farhad ; Khalilipour, Mir Mohammad ; Bidar, Bahareh</creatorcontrib><description>The main problem of developing data-driven soft sensors is the existence of contamination (i.e., outliers) and missing values in the industrial real-time data. In this paper, a new soft sensor modeling method has been extended using a generalized random walk model (GRW) in order to access a robust estimation of parameters in the presence of missing data and outliers. The method termed as generalized random walk-multi-state-dependent parameter (GRW-MSDP) was established based on MSDP models. The model parameters are estimated in multivariable state space by employing the Kalman filter (KF) and fixed-interval smoothing (FIS) algorithms. The Kalman filter has been applied to identify the best state estimation values and reduce the effect of outliers by assigning low weight to them. Although in the optimization of KF hyper-parameters the missing values are not taken into account, the FIS algorithm implements a predictor-corrector type estimator to handle the missing values. The prediction step of FIS can be used for interpolation directly without parameterization. The main privilege of the GRW-MSDP method is the not necessity of data pre-processing for fitting the best models. A simulation case and an industrial debutanizer column are utilized to illustrate the effectiveness and advantages of the proposed method. Results indicate that the non-linearity of the process can be addressed under this modeling method using fewer input variables and the change of the process is also well-tracked when missing values exist in the time series data. In addition, the GRW-MSDP method obtains significant improvements in the smoothing of parameters.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2022.3147306</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Algorithms ; Data analysis ; Data models ; debutanizer column ; Design parameters ; fixed interval smoothing ; generalized random walk ; Interpolation ; Kalman filter ; Kalman filters ; Mathematical models ; Missing data ; Modelling ; multi-state dependent parameter ; Optimization ; Outliers (statistics) ; Parameter estimation ; Parameter robustness ; Parameterization ; Predictor-corrector methods ; Random walk ; Sensors ; Smoothing ; Soft sensor ; Soft sensors ; Sorting ; State estimation</subject><ispartof>IEEE sensors journal, 2022-04, Vol.22 (8), p.7888-7901</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c208t-b3046ac99e592e8db6c5651ce05eb5fa976269f026837b223929d76b19e1a0f93</citedby><cites>FETCH-LOGICAL-c208t-b3046ac99e592e8db6c5651ce05eb5fa976269f026837b223929d76b19e1a0f93</cites><orcidid>0000-0002-1890-1515 ; 0000-0002-3450-2979 ; 0000-0002-3734-3336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9695457$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9695457$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dastjerd, Fereshte Tavakoli</creatorcontrib><creatorcontrib>Sadeghi, Jafar</creatorcontrib><creatorcontrib>Shahraki, Farhad</creatorcontrib><creatorcontrib>Khalilipour, Mir Mohammad</creatorcontrib><creatorcontrib>Bidar, Bahareh</creatorcontrib><title>Soft Sensor Design Using Multi-State Dependent Parameter Methodology Based on Generalized Random Walk Method</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>The main problem of developing data-driven soft sensors is the existence of contamination (i.e., outliers) and missing values in the industrial real-time data. In this paper, a new soft sensor modeling method has been extended using a generalized random walk model (GRW) in order to access a robust estimation of parameters in the presence of missing data and outliers. The method termed as generalized random walk-multi-state-dependent parameter (GRW-MSDP) was established based on MSDP models. The model parameters are estimated in multivariable state space by employing the Kalman filter (KF) and fixed-interval smoothing (FIS) algorithms. The Kalman filter has been applied to identify the best state estimation values and reduce the effect of outliers by assigning low weight to them. Although in the optimization of KF hyper-parameters the missing values are not taken into account, the FIS algorithm implements a predictor-corrector type estimator to handle the missing values. The prediction step of FIS can be used for interpolation directly without parameterization. The main privilege of the GRW-MSDP method is the not necessity of data pre-processing for fitting the best models. A simulation case and an industrial debutanizer column are utilized to illustrate the effectiveness and advantages of the proposed method. Results indicate that the non-linearity of the process can be addressed under this modeling method using fewer input variables and the change of the process is also well-tracked when missing values exist in the time series data. In addition, the GRW-MSDP method obtains significant improvements in the smoothing of parameters.</description><subject>Adaptation models</subject><subject>Algorithms</subject><subject>Data analysis</subject><subject>Data models</subject><subject>debutanizer column</subject><subject>Design parameters</subject><subject>fixed interval smoothing</subject><subject>generalized random walk</subject><subject>Interpolation</subject><subject>Kalman filter</subject><subject>Kalman filters</subject><subject>Mathematical models</subject><subject>Missing data</subject><subject>Modelling</subject><subject>multi-state dependent parameter</subject><subject>Optimization</subject><subject>Outliers (statistics)</subject><subject>Parameter estimation</subject><subject>Parameter robustness</subject><subject>Parameterization</subject><subject>Predictor-corrector methods</subject><subject>Random walk</subject><subject>Sensors</subject><subject>Smoothing</subject><subject>Soft sensor</subject><subject>Soft sensors</subject><subject>Sorting</subject><subject>State estimation</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRSMEEqXwAYiNJdYpfsR2vORRCqgFRKhgFznJpKSkdrHdRfl6ErViNTOac2ekE0XnBI8IwerqKRs_jyimdMRIIhkWB9GAcJ7GRCbpYd8zHCdMfh5HJ94vMSZKcjmI2szWAWVgvHXoDnyzMGjuG7NAs00bmjgLOkC3WIOpwAT0qp1eQQCHZhC-bGVbu9iiG-2hQtagCRhwum1-u_FNm8qu0Iduv_fwaXRU69bD2b4Oo_n9-P32IZ6-TB5vr6dxSXEa4oLhROhSKeCKQloVouSCkxIwh4LXWklBhaoxFSmTBaVMUVVJURAFRONasWF0ubu7dvZnAz7kS7txpnuZU8ExVTKhSUeRHVU6672DOl-7ZqXdNic476XmvdS8l5rvpXaZi12mAYB_XgnFEy7ZH7dbcuU</recordid><startdate>20220415</startdate><enddate>20220415</enddate><creator>Dastjerd, Fereshte Tavakoli</creator><creator>Sadeghi, Jafar</creator><creator>Shahraki, Farhad</creator><creator>Khalilipour, Mir Mohammad</creator><creator>Bidar, Bahareh</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1890-1515</orcidid><orcidid>https://orcid.org/0000-0002-3450-2979</orcidid><orcidid>https://orcid.org/0000-0002-3734-3336</orcidid></search><sort><creationdate>20220415</creationdate><title>Soft Sensor Design Using Multi-State Dependent Parameter Methodology Based on Generalized Random Walk Method</title><author>Dastjerd, Fereshte Tavakoli ; Sadeghi, Jafar ; Shahraki, Farhad ; Khalilipour, Mir Mohammad ; Bidar, Bahareh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c208t-b3046ac99e592e8db6c5651ce05eb5fa976269f026837b223929d76b19e1a0f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation models</topic><topic>Algorithms</topic><topic>Data analysis</topic><topic>Data models</topic><topic>debutanizer column</topic><topic>Design parameters</topic><topic>fixed interval smoothing</topic><topic>generalized random walk</topic><topic>Interpolation</topic><topic>Kalman filter</topic><topic>Kalman filters</topic><topic>Mathematical models</topic><topic>Missing data</topic><topic>Modelling</topic><topic>multi-state dependent parameter</topic><topic>Optimization</topic><topic>Outliers (statistics)</topic><topic>Parameter estimation</topic><topic>Parameter robustness</topic><topic>Parameterization</topic><topic>Predictor-corrector methods</topic><topic>Random walk</topic><topic>Sensors</topic><topic>Smoothing</topic><topic>Soft sensor</topic><topic>Soft sensors</topic><topic>Sorting</topic><topic>State estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dastjerd, Fereshte Tavakoli</creatorcontrib><creatorcontrib>Sadeghi, Jafar</creatorcontrib><creatorcontrib>Shahraki, Farhad</creatorcontrib><creatorcontrib>Khalilipour, Mir Mohammad</creatorcontrib><creatorcontrib>Bidar, Bahareh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dastjerd, Fereshte Tavakoli</au><au>Sadeghi, Jafar</au><au>Shahraki, Farhad</au><au>Khalilipour, Mir Mohammad</au><au>Bidar, Bahareh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soft Sensor Design Using Multi-State Dependent Parameter Methodology Based on Generalized Random Walk Method</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2022-04-15</date><risdate>2022</risdate><volume>22</volume><issue>8</issue><spage>7888</spage><epage>7901</epage><pages>7888-7901</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>The main problem of developing data-driven soft sensors is the existence of contamination (i.e., outliers) and missing values in the industrial real-time data. In this paper, a new soft sensor modeling method has been extended using a generalized random walk model (GRW) in order to access a robust estimation of parameters in the presence of missing data and outliers. The method termed as generalized random walk-multi-state-dependent parameter (GRW-MSDP) was established based on MSDP models. The model parameters are estimated in multivariable state space by employing the Kalman filter (KF) and fixed-interval smoothing (FIS) algorithms. The Kalman filter has been applied to identify the best state estimation values and reduce the effect of outliers by assigning low weight to them. Although in the optimization of KF hyper-parameters the missing values are not taken into account, the FIS algorithm implements a predictor-corrector type estimator to handle the missing values. The prediction step of FIS can be used for interpolation directly without parameterization. The main privilege of the GRW-MSDP method is the not necessity of data pre-processing for fitting the best models. A simulation case and an industrial debutanizer column are utilized to illustrate the effectiveness and advantages of the proposed method. Results indicate that the non-linearity of the process can be addressed under this modeling method using fewer input variables and the change of the process is also well-tracked when missing values exist in the time series data. In addition, the GRW-MSDP method obtains significant improvements in the smoothing of parameters.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2022.3147306</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1890-1515</orcidid><orcidid>https://orcid.org/0000-0002-3450-2979</orcidid><orcidid>https://orcid.org/0000-0002-3734-3336</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2022-04, Vol.22 (8), p.7888-7901
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_2650297424
source IEEE Electronic Library (IEL)
subjects Adaptation models
Algorithms
Data analysis
Data models
debutanizer column
Design parameters
fixed interval smoothing
generalized random walk
Interpolation
Kalman filter
Kalman filters
Mathematical models
Missing data
Modelling
multi-state dependent parameter
Optimization
Outliers (statistics)
Parameter estimation
Parameter robustness
Parameterization
Predictor-corrector methods
Random walk
Sensors
Smoothing
Soft sensor
Soft sensors
Sorting
State estimation
title Soft Sensor Design Using Multi-State Dependent Parameter Methodology Based on Generalized Random Walk Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A09%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soft%20Sensor%20Design%20Using%20Multi-State%20Dependent%20Parameter%20Methodology%20Based%20on%20Generalized%20Random%20Walk%20Method&rft.jtitle=IEEE%20sensors%20journal&rft.au=Dastjerd,%20Fereshte%20Tavakoli&rft.date=2022-04-15&rft.volume=22&rft.issue=8&rft.spage=7888&rft.epage=7901&rft.pages=7888-7901&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2022.3147306&rft_dat=%3Cproquest_RIE%3E2650297424%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2650297424&rft_id=info:pmid/&rft_ieee_id=9695457&rfr_iscdi=true