Applying Social Learning to Climate Communications—Visualising ‘People Like Me’ in Air Pollution and Climate Change Data
Technological approaches to carbon emission and air pollution data modelling consider where the issues are located and what is creating emissions. This paper argues that more focus should be paid to people—the drivers of vehicles or households burning fossil fuels (‘Who’) and the reasons for doing s...
Gespeichert in:
Veröffentlicht in: | Sustainability 2021-03, Vol.13 (6), p.3406 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 3406 |
container_title | Sustainability |
container_volume | 13 |
creator | Fogg-Rogers, Laura Hayes, Enda Vanherle, Kris Pápics, Péter I. Chatterton, Tim Barnes, Jo Slingerland, Stephan Boushel, Corra Laggan, Sophie Longhurst, James |
description | Technological approaches to carbon emission and air pollution data modelling consider where the issues are located and what is creating emissions. This paper argues that more focus should be paid to people—the drivers of vehicles or households burning fossil fuels (‘Who’) and the reasons for doing so at those times (‘Why’). We applied insights from social psychology (social identity theory and social cognitive theory) to better understand and communicate how people’s everyday activities are a cause of climate change and air pollution. A new method for citizen-focused source apportionment modelling and communication was developed in the ClairCity project and applied to travel data from Bristol, U.K. This approach enables understanding of the human dimension of vehicle use to improve policymaking, accounting for demographics (gender or age groups), socio-economic factors (income/car ownership) and motives for specific behaviours (e.g., commuting to work, leisure, shopping, etc.). Tailored communications for segmented in-groups were trialled, aiming to connect with group lived experiences and day-to-day behaviours. This citizen-centred approach aims to make groups more aware that ‘people like me’ create emissions, and equally, ‘people like me’ can take action to reduce emissions. |
doi_str_mv | 10.3390/su13063406 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2650197909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2650197909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-3caf1b647af42bb7f6dc21e2e16f703b269383a93f5dc7618f71dc17510b96783</originalsourceid><addsrcrecordid>eNpNkM1KAzEUhYMoWGo3PkHAnTCaTDpJsyz1F0Ys-LMdMpmkpqbJmMwsupE-hAt9vT6JM1Sod3Pvhe-eczkAnGJ0QQhHl7HFBFEyRvQADFLEcIJRhg7_zcdgFOMSdUUI5pgOwOe0ru3auAV88tIIC3Mlguv3xsOZNSvRKDjzq1XrjBSN8S5uN1-vJrbCmthz2833XPnaKpibdwUf1HbzA42DUxPg3Fvb9kdQuGov9ybcQsEr0YgTcKSFjWr014fg5eb6eXaX5I-397NpnsiUZ01CpNC4pGMm9DgtS6ZpJVOsUoWpZoiUKeVkQgQnOqsko3iiGa4kZhlGJadsQobgbKdbB__RqtgUS98G11kWKc0Q5owj3lHnO0oGH2NQuqhD93JYFxgVfcTFPmLyCxJncQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2650197909</pqid></control><display><type>article</type><title>Applying Social Learning to Climate Communications—Visualising ‘People Like Me’ in Air Pollution and Climate Change Data</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Fogg-Rogers, Laura ; Hayes, Enda ; Vanherle, Kris ; Pápics, Péter I. ; Chatterton, Tim ; Barnes, Jo ; Slingerland, Stephan ; Boushel, Corra ; Laggan, Sophie ; Longhurst, James</creator><creatorcontrib>Fogg-Rogers, Laura ; Hayes, Enda ; Vanherle, Kris ; Pápics, Péter I. ; Chatterton, Tim ; Barnes, Jo ; Slingerland, Stephan ; Boushel, Corra ; Laggan, Sophie ; Longhurst, James</creatorcontrib><description>Technological approaches to carbon emission and air pollution data modelling consider where the issues are located and what is creating emissions. This paper argues that more focus should be paid to people—the drivers of vehicles or households burning fossil fuels (‘Who’) and the reasons for doing so at those times (‘Why’). We applied insights from social psychology (social identity theory and social cognitive theory) to better understand and communicate how people’s everyday activities are a cause of climate change and air pollution. A new method for citizen-focused source apportionment modelling and communication was developed in the ClairCity project and applied to travel data from Bristol, U.K. This approach enables understanding of the human dimension of vehicle use to improve policymaking, accounting for demographics (gender or age groups), socio-economic factors (income/car ownership) and motives for specific behaviours (e.g., commuting to work, leisure, shopping, etc.). Tailored communications for segmented in-groups were trialled, aiming to connect with group lived experiences and day-to-day behaviours. This citizen-centred approach aims to make groups more aware that ‘people like me’ create emissions, and equally, ‘people like me’ can take action to reduce emissions.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su13063406</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Air pollution ; Burning ; Climate change ; Commuting ; Demographics ; Demography ; Economic factors ; Emissions ; Households ; Modelling ; Outdoor air quality ; Social discrimination learning ; Social factors ; Socioeconomic factors ; Socioeconomics ; Sustainability ; Womens health</subject><ispartof>Sustainability, 2021-03, Vol.13 (6), p.3406</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-3caf1b647af42bb7f6dc21e2e16f703b269383a93f5dc7618f71dc17510b96783</citedby><cites>FETCH-LOGICAL-c295t-3caf1b647af42bb7f6dc21e2e16f703b269383a93f5dc7618f71dc17510b96783</cites><orcidid>0000-0002-1081-4855 ; 0000-0002-0664-024X ; 0000-0002-8735-9491 ; 0000-0002-3947-4348</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fogg-Rogers, Laura</creatorcontrib><creatorcontrib>Hayes, Enda</creatorcontrib><creatorcontrib>Vanherle, Kris</creatorcontrib><creatorcontrib>Pápics, Péter I.</creatorcontrib><creatorcontrib>Chatterton, Tim</creatorcontrib><creatorcontrib>Barnes, Jo</creatorcontrib><creatorcontrib>Slingerland, Stephan</creatorcontrib><creatorcontrib>Boushel, Corra</creatorcontrib><creatorcontrib>Laggan, Sophie</creatorcontrib><creatorcontrib>Longhurst, James</creatorcontrib><title>Applying Social Learning to Climate Communications—Visualising ‘People Like Me’ in Air Pollution and Climate Change Data</title><title>Sustainability</title><description>Technological approaches to carbon emission and air pollution data modelling consider where the issues are located and what is creating emissions. This paper argues that more focus should be paid to people—the drivers of vehicles or households burning fossil fuels (‘Who’) and the reasons for doing so at those times (‘Why’). We applied insights from social psychology (social identity theory and social cognitive theory) to better understand and communicate how people’s everyday activities are a cause of climate change and air pollution. A new method for citizen-focused source apportionment modelling and communication was developed in the ClairCity project and applied to travel data from Bristol, U.K. This approach enables understanding of the human dimension of vehicle use to improve policymaking, accounting for demographics (gender or age groups), socio-economic factors (income/car ownership) and motives for specific behaviours (e.g., commuting to work, leisure, shopping, etc.). Tailored communications for segmented in-groups were trialled, aiming to connect with group lived experiences and day-to-day behaviours. This citizen-centred approach aims to make groups more aware that ‘people like me’ create emissions, and equally, ‘people like me’ can take action to reduce emissions.</description><subject>Air pollution</subject><subject>Burning</subject><subject>Climate change</subject><subject>Commuting</subject><subject>Demographics</subject><subject>Demography</subject><subject>Economic factors</subject><subject>Emissions</subject><subject>Households</subject><subject>Modelling</subject><subject>Outdoor air quality</subject><subject>Social discrimination learning</subject><subject>Social factors</subject><subject>Socioeconomic factors</subject><subject>Socioeconomics</subject><subject>Sustainability</subject><subject>Womens health</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkM1KAzEUhYMoWGo3PkHAnTCaTDpJsyz1F0Ys-LMdMpmkpqbJmMwsupE-hAt9vT6JM1Sod3Pvhe-eczkAnGJ0QQhHl7HFBFEyRvQADFLEcIJRhg7_zcdgFOMSdUUI5pgOwOe0ru3auAV88tIIC3Mlguv3xsOZNSvRKDjzq1XrjBSN8S5uN1-vJrbCmthz2833XPnaKpibdwUf1HbzA42DUxPg3Fvb9kdQuGov9ybcQsEr0YgTcKSFjWr014fg5eb6eXaX5I-397NpnsiUZ01CpNC4pGMm9DgtS6ZpJVOsUoWpZoiUKeVkQgQnOqsko3iiGa4kZhlGJadsQobgbKdbB__RqtgUS98G11kWKc0Q5owj3lHnO0oGH2NQuqhD93JYFxgVfcTFPmLyCxJncQQ</recordid><startdate>20210319</startdate><enddate>20210319</enddate><creator>Fogg-Rogers, Laura</creator><creator>Hayes, Enda</creator><creator>Vanherle, Kris</creator><creator>Pápics, Péter I.</creator><creator>Chatterton, Tim</creator><creator>Barnes, Jo</creator><creator>Slingerland, Stephan</creator><creator>Boushel, Corra</creator><creator>Laggan, Sophie</creator><creator>Longhurst, James</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-1081-4855</orcidid><orcidid>https://orcid.org/0000-0002-0664-024X</orcidid><orcidid>https://orcid.org/0000-0002-8735-9491</orcidid><orcidid>https://orcid.org/0000-0002-3947-4348</orcidid></search><sort><creationdate>20210319</creationdate><title>Applying Social Learning to Climate Communications—Visualising ‘People Like Me’ in Air Pollution and Climate Change Data</title><author>Fogg-Rogers, Laura ; Hayes, Enda ; Vanherle, Kris ; Pápics, Péter I. ; Chatterton, Tim ; Barnes, Jo ; Slingerland, Stephan ; Boushel, Corra ; Laggan, Sophie ; Longhurst, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-3caf1b647af42bb7f6dc21e2e16f703b269383a93f5dc7618f71dc17510b96783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Air pollution</topic><topic>Burning</topic><topic>Climate change</topic><topic>Commuting</topic><topic>Demographics</topic><topic>Demography</topic><topic>Economic factors</topic><topic>Emissions</topic><topic>Households</topic><topic>Modelling</topic><topic>Outdoor air quality</topic><topic>Social discrimination learning</topic><topic>Social factors</topic><topic>Socioeconomic factors</topic><topic>Socioeconomics</topic><topic>Sustainability</topic><topic>Womens health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fogg-Rogers, Laura</creatorcontrib><creatorcontrib>Hayes, Enda</creatorcontrib><creatorcontrib>Vanherle, Kris</creatorcontrib><creatorcontrib>Pápics, Péter I.</creatorcontrib><creatorcontrib>Chatterton, Tim</creatorcontrib><creatorcontrib>Barnes, Jo</creatorcontrib><creatorcontrib>Slingerland, Stephan</creatorcontrib><creatorcontrib>Boushel, Corra</creatorcontrib><creatorcontrib>Laggan, Sophie</creatorcontrib><creatorcontrib>Longhurst, James</creatorcontrib><collection>CrossRef</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fogg-Rogers, Laura</au><au>Hayes, Enda</au><au>Vanherle, Kris</au><au>Pápics, Péter I.</au><au>Chatterton, Tim</au><au>Barnes, Jo</au><au>Slingerland, Stephan</au><au>Boushel, Corra</au><au>Laggan, Sophie</au><au>Longhurst, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applying Social Learning to Climate Communications—Visualising ‘People Like Me’ in Air Pollution and Climate Change Data</atitle><jtitle>Sustainability</jtitle><date>2021-03-19</date><risdate>2021</risdate><volume>13</volume><issue>6</issue><spage>3406</spage><pages>3406-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Technological approaches to carbon emission and air pollution data modelling consider where the issues are located and what is creating emissions. This paper argues that more focus should be paid to people—the drivers of vehicles or households burning fossil fuels (‘Who’) and the reasons for doing so at those times (‘Why’). We applied insights from social psychology (social identity theory and social cognitive theory) to better understand and communicate how people’s everyday activities are a cause of climate change and air pollution. A new method for citizen-focused source apportionment modelling and communication was developed in the ClairCity project and applied to travel data from Bristol, U.K. This approach enables understanding of the human dimension of vehicle use to improve policymaking, accounting for demographics (gender or age groups), socio-economic factors (income/car ownership) and motives for specific behaviours (e.g., commuting to work, leisure, shopping, etc.). Tailored communications for segmented in-groups were trialled, aiming to connect with group lived experiences and day-to-day behaviours. This citizen-centred approach aims to make groups more aware that ‘people like me’ create emissions, and equally, ‘people like me’ can take action to reduce emissions.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su13063406</doi><orcidid>https://orcid.org/0000-0002-1081-4855</orcidid><orcidid>https://orcid.org/0000-0002-0664-024X</orcidid><orcidid>https://orcid.org/0000-0002-8735-9491</orcidid><orcidid>https://orcid.org/0000-0002-3947-4348</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-1050 |
ispartof | Sustainability, 2021-03, Vol.13 (6), p.3406 |
issn | 2071-1050 2071-1050 |
language | eng |
recordid | cdi_proquest_journals_2650197909 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Air pollution Burning Climate change Commuting Demographics Demography Economic factors Emissions Households Modelling Outdoor air quality Social discrimination learning Social factors Socioeconomic factors Socioeconomics Sustainability Womens health |
title | Applying Social Learning to Climate Communications—Visualising ‘People Like Me’ in Air Pollution and Climate Change Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A06%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applying%20Social%20Learning%20to%20Climate%20Communications%E2%80%94Visualising%20%E2%80%98People%20Like%20Me%E2%80%99%20in%20Air%20Pollution%20and%20Climate%20Change%20Data&rft.jtitle=Sustainability&rft.au=Fogg-Rogers,%20Laura&rft.date=2021-03-19&rft.volume=13&rft.issue=6&rft.spage=3406&rft.pages=3406-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su13063406&rft_dat=%3Cproquest_cross%3E2650197909%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2650197909&rft_id=info:pmid/&rfr_iscdi=true |