Applying Social Learning to Climate Communications—Visualising ‘People Like Me’ in Air Pollution and Climate Change Data

Technological approaches to carbon emission and air pollution data modelling consider where the issues are located and what is creating emissions. This paper argues that more focus should be paid to people—the drivers of vehicles or households burning fossil fuels (‘Who’) and the reasons for doing s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2021-03, Vol.13 (6), p.3406
Hauptverfasser: Fogg-Rogers, Laura, Hayes, Enda, Vanherle, Kris, Pápics, Péter I., Chatterton, Tim, Barnes, Jo, Slingerland, Stephan, Boushel, Corra, Laggan, Sophie, Longhurst, James
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 3406
container_title Sustainability
container_volume 13
creator Fogg-Rogers, Laura
Hayes, Enda
Vanherle, Kris
Pápics, Péter I.
Chatterton, Tim
Barnes, Jo
Slingerland, Stephan
Boushel, Corra
Laggan, Sophie
Longhurst, James
description Technological approaches to carbon emission and air pollution data modelling consider where the issues are located and what is creating emissions. This paper argues that more focus should be paid to people—the drivers of vehicles or households burning fossil fuels (‘Who’) and the reasons for doing so at those times (‘Why’). We applied insights from social psychology (social identity theory and social cognitive theory) to better understand and communicate how people’s everyday activities are a cause of climate change and air pollution. A new method for citizen-focused source apportionment modelling and communication was developed in the ClairCity project and applied to travel data from Bristol, U.K. This approach enables understanding of the human dimension of vehicle use to improve policymaking, accounting for demographics (gender or age groups), socio-economic factors (income/car ownership) and motives for specific behaviours (e.g., commuting to work, leisure, shopping, etc.). Tailored communications for segmented in-groups were trialled, aiming to connect with group lived experiences and day-to-day behaviours. This citizen-centred approach aims to make groups more aware that ‘people like me’ create emissions, and equally, ‘people like me’ can take action to reduce emissions.
doi_str_mv 10.3390/su13063406
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2650197909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2650197909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-3caf1b647af42bb7f6dc21e2e16f703b269383a93f5dc7618f71dc17510b96783</originalsourceid><addsrcrecordid>eNpNkM1KAzEUhYMoWGo3PkHAnTCaTDpJsyz1F0Ys-LMdMpmkpqbJmMwsupE-hAt9vT6JM1Sod3Pvhe-eczkAnGJ0QQhHl7HFBFEyRvQADFLEcIJRhg7_zcdgFOMSdUUI5pgOwOe0ru3auAV88tIIC3Mlguv3xsOZNSvRKDjzq1XrjBSN8S5uN1-vJrbCmthz2833XPnaKpibdwUf1HbzA42DUxPg3Fvb9kdQuGov9ybcQsEr0YgTcKSFjWr014fg5eb6eXaX5I-397NpnsiUZ01CpNC4pGMm9DgtS6ZpJVOsUoWpZoiUKeVkQgQnOqsko3iiGa4kZhlGJadsQobgbKdbB__RqtgUS98G11kWKc0Q5owj3lHnO0oGH2NQuqhD93JYFxgVfcTFPmLyCxJncQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2650197909</pqid></control><display><type>article</type><title>Applying Social Learning to Climate Communications—Visualising ‘People Like Me’ in Air Pollution and Climate Change Data</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Fogg-Rogers, Laura ; Hayes, Enda ; Vanherle, Kris ; Pápics, Péter I. ; Chatterton, Tim ; Barnes, Jo ; Slingerland, Stephan ; Boushel, Corra ; Laggan, Sophie ; Longhurst, James</creator><creatorcontrib>Fogg-Rogers, Laura ; Hayes, Enda ; Vanherle, Kris ; Pápics, Péter I. ; Chatterton, Tim ; Barnes, Jo ; Slingerland, Stephan ; Boushel, Corra ; Laggan, Sophie ; Longhurst, James</creatorcontrib><description>Technological approaches to carbon emission and air pollution data modelling consider where the issues are located and what is creating emissions. This paper argues that more focus should be paid to people—the drivers of vehicles or households burning fossil fuels (‘Who’) and the reasons for doing so at those times (‘Why’). We applied insights from social psychology (social identity theory and social cognitive theory) to better understand and communicate how people’s everyday activities are a cause of climate change and air pollution. A new method for citizen-focused source apportionment modelling and communication was developed in the ClairCity project and applied to travel data from Bristol, U.K. This approach enables understanding of the human dimension of vehicle use to improve policymaking, accounting for demographics (gender or age groups), socio-economic factors (income/car ownership) and motives for specific behaviours (e.g., commuting to work, leisure, shopping, etc.). Tailored communications for segmented in-groups were trialled, aiming to connect with group lived experiences and day-to-day behaviours. This citizen-centred approach aims to make groups more aware that ‘people like me’ create emissions, and equally, ‘people like me’ can take action to reduce emissions.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su13063406</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Air pollution ; Burning ; Climate change ; Commuting ; Demographics ; Demography ; Economic factors ; Emissions ; Households ; Modelling ; Outdoor air quality ; Social discrimination learning ; Social factors ; Socioeconomic factors ; Socioeconomics ; Sustainability ; Womens health</subject><ispartof>Sustainability, 2021-03, Vol.13 (6), p.3406</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-3caf1b647af42bb7f6dc21e2e16f703b269383a93f5dc7618f71dc17510b96783</citedby><cites>FETCH-LOGICAL-c295t-3caf1b647af42bb7f6dc21e2e16f703b269383a93f5dc7618f71dc17510b96783</cites><orcidid>0000-0002-1081-4855 ; 0000-0002-0664-024X ; 0000-0002-8735-9491 ; 0000-0002-3947-4348</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fogg-Rogers, Laura</creatorcontrib><creatorcontrib>Hayes, Enda</creatorcontrib><creatorcontrib>Vanherle, Kris</creatorcontrib><creatorcontrib>Pápics, Péter I.</creatorcontrib><creatorcontrib>Chatterton, Tim</creatorcontrib><creatorcontrib>Barnes, Jo</creatorcontrib><creatorcontrib>Slingerland, Stephan</creatorcontrib><creatorcontrib>Boushel, Corra</creatorcontrib><creatorcontrib>Laggan, Sophie</creatorcontrib><creatorcontrib>Longhurst, James</creatorcontrib><title>Applying Social Learning to Climate Communications—Visualising ‘People Like Me’ in Air Pollution and Climate Change Data</title><title>Sustainability</title><description>Technological approaches to carbon emission and air pollution data modelling consider where the issues are located and what is creating emissions. This paper argues that more focus should be paid to people—the drivers of vehicles or households burning fossil fuels (‘Who’) and the reasons for doing so at those times (‘Why’). We applied insights from social psychology (social identity theory and social cognitive theory) to better understand and communicate how people’s everyday activities are a cause of climate change and air pollution. A new method for citizen-focused source apportionment modelling and communication was developed in the ClairCity project and applied to travel data from Bristol, U.K. This approach enables understanding of the human dimension of vehicle use to improve policymaking, accounting for demographics (gender or age groups), socio-economic factors (income/car ownership) and motives for specific behaviours (e.g., commuting to work, leisure, shopping, etc.). Tailored communications for segmented in-groups were trialled, aiming to connect with group lived experiences and day-to-day behaviours. This citizen-centred approach aims to make groups more aware that ‘people like me’ create emissions, and equally, ‘people like me’ can take action to reduce emissions.</description><subject>Air pollution</subject><subject>Burning</subject><subject>Climate change</subject><subject>Commuting</subject><subject>Demographics</subject><subject>Demography</subject><subject>Economic factors</subject><subject>Emissions</subject><subject>Households</subject><subject>Modelling</subject><subject>Outdoor air quality</subject><subject>Social discrimination learning</subject><subject>Social factors</subject><subject>Socioeconomic factors</subject><subject>Socioeconomics</subject><subject>Sustainability</subject><subject>Womens health</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkM1KAzEUhYMoWGo3PkHAnTCaTDpJsyz1F0Ys-LMdMpmkpqbJmMwsupE-hAt9vT6JM1Sod3Pvhe-eczkAnGJ0QQhHl7HFBFEyRvQADFLEcIJRhg7_zcdgFOMSdUUI5pgOwOe0ru3auAV88tIIC3Mlguv3xsOZNSvRKDjzq1XrjBSN8S5uN1-vJrbCmthz2833XPnaKpibdwUf1HbzA42DUxPg3Fvb9kdQuGov9ybcQsEr0YgTcKSFjWr014fg5eb6eXaX5I-397NpnsiUZ01CpNC4pGMm9DgtS6ZpJVOsUoWpZoiUKeVkQgQnOqsko3iiGa4kZhlGJadsQobgbKdbB__RqtgUS98G11kWKc0Q5owj3lHnO0oGH2NQuqhD93JYFxgVfcTFPmLyCxJncQQ</recordid><startdate>20210319</startdate><enddate>20210319</enddate><creator>Fogg-Rogers, Laura</creator><creator>Hayes, Enda</creator><creator>Vanherle, Kris</creator><creator>Pápics, Péter I.</creator><creator>Chatterton, Tim</creator><creator>Barnes, Jo</creator><creator>Slingerland, Stephan</creator><creator>Boushel, Corra</creator><creator>Laggan, Sophie</creator><creator>Longhurst, James</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-1081-4855</orcidid><orcidid>https://orcid.org/0000-0002-0664-024X</orcidid><orcidid>https://orcid.org/0000-0002-8735-9491</orcidid><orcidid>https://orcid.org/0000-0002-3947-4348</orcidid></search><sort><creationdate>20210319</creationdate><title>Applying Social Learning to Climate Communications—Visualising ‘People Like Me’ in Air Pollution and Climate Change Data</title><author>Fogg-Rogers, Laura ; Hayes, Enda ; Vanherle, Kris ; Pápics, Péter I. ; Chatterton, Tim ; Barnes, Jo ; Slingerland, Stephan ; Boushel, Corra ; Laggan, Sophie ; Longhurst, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-3caf1b647af42bb7f6dc21e2e16f703b269383a93f5dc7618f71dc17510b96783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Air pollution</topic><topic>Burning</topic><topic>Climate change</topic><topic>Commuting</topic><topic>Demographics</topic><topic>Demography</topic><topic>Economic factors</topic><topic>Emissions</topic><topic>Households</topic><topic>Modelling</topic><topic>Outdoor air quality</topic><topic>Social discrimination learning</topic><topic>Social factors</topic><topic>Socioeconomic factors</topic><topic>Socioeconomics</topic><topic>Sustainability</topic><topic>Womens health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fogg-Rogers, Laura</creatorcontrib><creatorcontrib>Hayes, Enda</creatorcontrib><creatorcontrib>Vanherle, Kris</creatorcontrib><creatorcontrib>Pápics, Péter I.</creatorcontrib><creatorcontrib>Chatterton, Tim</creatorcontrib><creatorcontrib>Barnes, Jo</creatorcontrib><creatorcontrib>Slingerland, Stephan</creatorcontrib><creatorcontrib>Boushel, Corra</creatorcontrib><creatorcontrib>Laggan, Sophie</creatorcontrib><creatorcontrib>Longhurst, James</creatorcontrib><collection>CrossRef</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fogg-Rogers, Laura</au><au>Hayes, Enda</au><au>Vanherle, Kris</au><au>Pápics, Péter I.</au><au>Chatterton, Tim</au><au>Barnes, Jo</au><au>Slingerland, Stephan</au><au>Boushel, Corra</au><au>Laggan, Sophie</au><au>Longhurst, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applying Social Learning to Climate Communications—Visualising ‘People Like Me’ in Air Pollution and Climate Change Data</atitle><jtitle>Sustainability</jtitle><date>2021-03-19</date><risdate>2021</risdate><volume>13</volume><issue>6</issue><spage>3406</spage><pages>3406-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Technological approaches to carbon emission and air pollution data modelling consider where the issues are located and what is creating emissions. This paper argues that more focus should be paid to people—the drivers of vehicles or households burning fossil fuels (‘Who’) and the reasons for doing so at those times (‘Why’). We applied insights from social psychology (social identity theory and social cognitive theory) to better understand and communicate how people’s everyday activities are a cause of climate change and air pollution. A new method for citizen-focused source apportionment modelling and communication was developed in the ClairCity project and applied to travel data from Bristol, U.K. This approach enables understanding of the human dimension of vehicle use to improve policymaking, accounting for demographics (gender or age groups), socio-economic factors (income/car ownership) and motives for specific behaviours (e.g., commuting to work, leisure, shopping, etc.). Tailored communications for segmented in-groups were trialled, aiming to connect with group lived experiences and day-to-day behaviours. This citizen-centred approach aims to make groups more aware that ‘people like me’ create emissions, and equally, ‘people like me’ can take action to reduce emissions.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su13063406</doi><orcidid>https://orcid.org/0000-0002-1081-4855</orcidid><orcidid>https://orcid.org/0000-0002-0664-024X</orcidid><orcidid>https://orcid.org/0000-0002-8735-9491</orcidid><orcidid>https://orcid.org/0000-0002-3947-4348</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2021-03, Vol.13 (6), p.3406
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_2650197909
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Air pollution
Burning
Climate change
Commuting
Demographics
Demography
Economic factors
Emissions
Households
Modelling
Outdoor air quality
Social discrimination learning
Social factors
Socioeconomic factors
Socioeconomics
Sustainability
Womens health
title Applying Social Learning to Climate Communications—Visualising ‘People Like Me’ in Air Pollution and Climate Change Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A06%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applying%20Social%20Learning%20to%20Climate%20Communications%E2%80%94Visualising%20%E2%80%98People%20Like%20Me%E2%80%99%20in%20Air%20Pollution%20and%20Climate%20Change%20Data&rft.jtitle=Sustainability&rft.au=Fogg-Rogers,%20Laura&rft.date=2021-03-19&rft.volume=13&rft.issue=6&rft.spage=3406&rft.pages=3406-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su13063406&rft_dat=%3Cproquest_cross%3E2650197909%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2650197909&rft_id=info:pmid/&rfr_iscdi=true