Neural Face Video Compression using Multiple Views

Recent advances in deep generative models led to the development of neural face video compression codecs that use an order of magnitude less bandwidth than engineered codecs. These neural codecs reconstruct the current frame by warping a source frame and using a generative model to compensate for im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-04
Hauptverfasser: Volokitin, Anna, Brugger, Stefan, Benlalah, Ali, Martin, Sebastian, Amberg, Brian, Tschannen, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Volokitin, Anna
Brugger, Stefan
Benlalah, Ali
Martin, Sebastian
Amberg, Brian
Tschannen, Michael
description Recent advances in deep generative models led to the development of neural face video compression codecs that use an order of magnitude less bandwidth than engineered codecs. These neural codecs reconstruct the current frame by warping a source frame and using a generative model to compensate for imperfections in the warped source frame. Thereby, the warp is encoded and transmitted using a small number of keypoints rather than a dense flow field, which leads to massive savings compared to traditional codecs. However, by relying on a single source frame only, these methods lead to inaccurate reconstructions (e.g. one side of the head becomes unoccluded when turning the head and has to be synthesized). Here, we aim to tackle this issue by relying on multiple source frames (views of the face) and present encouraging results.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2650100661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2650100661</sourcerecordid><originalsourceid>FETCH-proquest_journals_26501006613</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw8kstLUrMUXBLTE5VCMtMSc1XcM7PLShKLS7OzM9TKC3OzEtX8C3NKcksyAEpSC0v5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMzUwNDAwMzM0Nj4lQBAL5lM4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2650100661</pqid></control><display><type>article</type><title>Neural Face Video Compression using Multiple Views</title><source>Free E- Journals</source><creator>Volokitin, Anna ; Brugger, Stefan ; Benlalah, Ali ; Martin, Sebastian ; Amberg, Brian ; Tschannen, Michael</creator><creatorcontrib>Volokitin, Anna ; Brugger, Stefan ; Benlalah, Ali ; Martin, Sebastian ; Amberg, Brian ; Tschannen, Michael</creatorcontrib><description>Recent advances in deep generative models led to the development of neural face video compression codecs that use an order of magnitude less bandwidth than engineered codecs. These neural codecs reconstruct the current frame by warping a source frame and using a generative model to compensate for imperfections in the warped source frame. Thereby, the warp is encoded and transmitted using a small number of keypoints rather than a dense flow field, which leads to massive savings compared to traditional codecs. However, by relying on a single source frame only, these methods lead to inaccurate reconstructions (e.g. one side of the head becomes unoccluded when turning the head and has to be synthesized). Here, we aim to tackle this issue by relying on multiple source frames (views of the face) and present encouraging results.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Codec ; Video compression</subject><ispartof>arXiv.org, 2022-04</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Volokitin, Anna</creatorcontrib><creatorcontrib>Brugger, Stefan</creatorcontrib><creatorcontrib>Benlalah, Ali</creatorcontrib><creatorcontrib>Martin, Sebastian</creatorcontrib><creatorcontrib>Amberg, Brian</creatorcontrib><creatorcontrib>Tschannen, Michael</creatorcontrib><title>Neural Face Video Compression using Multiple Views</title><title>arXiv.org</title><description>Recent advances in deep generative models led to the development of neural face video compression codecs that use an order of magnitude less bandwidth than engineered codecs. These neural codecs reconstruct the current frame by warping a source frame and using a generative model to compensate for imperfections in the warped source frame. Thereby, the warp is encoded and transmitted using a small number of keypoints rather than a dense flow field, which leads to massive savings compared to traditional codecs. However, by relying on a single source frame only, these methods lead to inaccurate reconstructions (e.g. one side of the head becomes unoccluded when turning the head and has to be synthesized). Here, we aim to tackle this issue by relying on multiple source frames (views of the face) and present encouraging results.</description><subject>Codec</subject><subject>Video compression</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw8kstLUrMUXBLTE5VCMtMSc1XcM7PLShKLS7OzM9TKC3OzEtX8C3NKcksyAEpSC0v5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMzUwNDAwMzM0Nj4lQBAL5lM4w</recordid><startdate>20220413</startdate><enddate>20220413</enddate><creator>Volokitin, Anna</creator><creator>Brugger, Stefan</creator><creator>Benlalah, Ali</creator><creator>Martin, Sebastian</creator><creator>Amberg, Brian</creator><creator>Tschannen, Michael</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220413</creationdate><title>Neural Face Video Compression using Multiple Views</title><author>Volokitin, Anna ; Brugger, Stefan ; Benlalah, Ali ; Martin, Sebastian ; Amberg, Brian ; Tschannen, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26501006613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Codec</topic><topic>Video compression</topic><toplevel>online_resources</toplevel><creatorcontrib>Volokitin, Anna</creatorcontrib><creatorcontrib>Brugger, Stefan</creatorcontrib><creatorcontrib>Benlalah, Ali</creatorcontrib><creatorcontrib>Martin, Sebastian</creatorcontrib><creatorcontrib>Amberg, Brian</creatorcontrib><creatorcontrib>Tschannen, Michael</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Volokitin, Anna</au><au>Brugger, Stefan</au><au>Benlalah, Ali</au><au>Martin, Sebastian</au><au>Amberg, Brian</au><au>Tschannen, Michael</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Neural Face Video Compression using Multiple Views</atitle><jtitle>arXiv.org</jtitle><date>2022-04-13</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Recent advances in deep generative models led to the development of neural face video compression codecs that use an order of magnitude less bandwidth than engineered codecs. These neural codecs reconstruct the current frame by warping a source frame and using a generative model to compensate for imperfections in the warped source frame. Thereby, the warp is encoded and transmitted using a small number of keypoints rather than a dense flow field, which leads to massive savings compared to traditional codecs. However, by relying on a single source frame only, these methods lead to inaccurate reconstructions (e.g. one side of the head becomes unoccluded when turning the head and has to be synthesized). Here, we aim to tackle this issue by relying on multiple source frames (views of the face) and present encouraging results.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2650100661
source Free E- Journals
subjects Codec
Video compression
title Neural Face Video Compression using Multiple Views
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A20%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Neural%20Face%20Video%20Compression%20using%20Multiple%20Views&rft.jtitle=arXiv.org&rft.au=Volokitin,%20Anna&rft.date=2022-04-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2650100661%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2650100661&rft_id=info:pmid/&rfr_iscdi=true