Damage Progression and Fragmentation in Atomistic, Single Crystal Copper at High Strain Rates

We show a correlation between nanoscale damage and fragmentation length scale through atomistic simulations. We simulated homogeneously expanding perfect, single crystal copper at rates ranging from 1E+08 to 3E+10 s-1 and temperatures from 200 to 1000 K. Damage was quantified in terms of void number...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solid State Phenomena 2016-12, Vol.258, p.49-52
Hauptverfasser: Dickel, Doyl E., Danielson, Kent, Williams, Neil, Hammi, Youssef, Huddleston, Bradley D., Horstemeyer, Mark F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 52
container_issue
container_start_page 49
container_title Solid State Phenomena
container_volume 258
creator Dickel, Doyl E.
Danielson, Kent
Williams, Neil
Hammi, Youssef
Huddleston, Bradley D.
Horstemeyer, Mark F.
description We show a correlation between nanoscale damage and fragmentation length scale through atomistic simulations. We simulated homogeneously expanding perfect, single crystal copper at rates ranging from 1E+08 to 3E+10 s-1 and temperatures from 200 to 1000 K. Damage was quantified in terms of void number density, average void volume, and void volume fraction. We quantified fragmentation size in terms of a length scale parameter, the solid volume per void surface area. A-1⁄2 power law relationship between the fragment length scale and strain rate was observed following the predictions of Mott. The fragmentation length scale and the maximum void number density are strongly correlated for this damage mechanism. We can scale up the relationships between damage and fragmentation observed in the molecular dynamics simulations to motivate a continuum scale fragmentation model.
doi_str_mv 10.4028/www.scientific.net/SSP.258.49
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2650012370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2650012370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2089-706d2d8775d33f4d694191157875457b1792a19daf713f0fb8e9893d81ec26823</originalsourceid><addsrcrecordid>eNqNkN1LwzAUxYMfoM79DwHxzXb5aJvkQWRU54SBw-qjhKxNu4y1nUnG2H9vxoS9-nTh3nPu4fwAuMcoThDho91uF7vS6M6b2pRxp_2oKOYxSXmciDNwjbOMRIIxcQ6GgnGKKKdpRrLkItwQJhGiIrkCN86tEKKYY34Nvp9VqxoN57ZvrHbO9B1UXQUnVjVtSFL-sDEdHPu-Nc6b8gEWpmvWGuZ277xaw7zfbLSFysOpaZaw8FYF_Yfy2t2Cy1qtnR7-zQH4mrx85tNo9v76lo9nUUkQFxFDWUUqzlhaUVonVSYSLDBOGWdpkrIFZoIoLCpVM0xrVC-4FlzQimNdkowTOgB3x78b2_9stfNy1W9tFyIlyVIUulOGgurxqCpt75zVtdxY0yq7lxjJA2EZCMsTYRkIy0BYBsIyEcH_dPSHhp3zulyeYv734Rd3Folq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2650012370</pqid></control><display><type>article</type><title>Damage Progression and Fragmentation in Atomistic, Single Crystal Copper at High Strain Rates</title><source>Scientific.net Journals</source><creator>Dickel, Doyl E. ; Danielson, Kent ; Williams, Neil ; Hammi, Youssef ; Huddleston, Bradley D. ; Horstemeyer, Mark F.</creator><creatorcontrib>Dickel, Doyl E. ; Danielson, Kent ; Williams, Neil ; Hammi, Youssef ; Huddleston, Bradley D. ; Horstemeyer, Mark F.</creatorcontrib><description>We show a correlation between nanoscale damage and fragmentation length scale through atomistic simulations. We simulated homogeneously expanding perfect, single crystal copper at rates ranging from 1E+08 to 3E+10 s-1 and temperatures from 200 to 1000 K. Damage was quantified in terms of void number density, average void volume, and void volume fraction. We quantified fragmentation size in terms of a length scale parameter, the solid volume per void surface area. A-1⁄2 power law relationship between the fragment length scale and strain rate was observed following the predictions of Mott. The fragmentation length scale and the maximum void number density are strongly correlated for this damage mechanism. We can scale up the relationships between damage and fragmentation observed in the molecular dynamics simulations to motivate a continuum scale fragmentation model.</description><identifier>ISSN: 1012-0394</identifier><identifier>ISSN: 1662-9779</identifier><identifier>ISBN: 9783038356264</identifier><identifier>ISBN: 3038356263</identifier><identifier>EISSN: 1662-9779</identifier><identifier>DOI: 10.4028/www.scientific.net/SSP.258.49</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Copper ; Damage ; Density ; Fragmentation ; High strain rate ; Molecular dynamics ; Simulation ; Single crystals</subject><ispartof>Solid State Phenomena, 2016-12, Vol.258, p.49-52</ispartof><rights>2017 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Dec 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2760-8812</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/4206?width=600</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Dickel, Doyl E.</creatorcontrib><creatorcontrib>Danielson, Kent</creatorcontrib><creatorcontrib>Williams, Neil</creatorcontrib><creatorcontrib>Hammi, Youssef</creatorcontrib><creatorcontrib>Huddleston, Bradley D.</creatorcontrib><creatorcontrib>Horstemeyer, Mark F.</creatorcontrib><title>Damage Progression and Fragmentation in Atomistic, Single Crystal Copper at High Strain Rates</title><title>Solid State Phenomena</title><description>We show a correlation between nanoscale damage and fragmentation length scale through atomistic simulations. We simulated homogeneously expanding perfect, single crystal copper at rates ranging from 1E+08 to 3E+10 s-1 and temperatures from 200 to 1000 K. Damage was quantified in terms of void number density, average void volume, and void volume fraction. We quantified fragmentation size in terms of a length scale parameter, the solid volume per void surface area. A-1⁄2 power law relationship between the fragment length scale and strain rate was observed following the predictions of Mott. The fragmentation length scale and the maximum void number density are strongly correlated for this damage mechanism. We can scale up the relationships between damage and fragmentation observed in the molecular dynamics simulations to motivate a continuum scale fragmentation model.</description><subject>Copper</subject><subject>Damage</subject><subject>Density</subject><subject>Fragmentation</subject><subject>High strain rate</subject><subject>Molecular dynamics</subject><subject>Simulation</subject><subject>Single crystals</subject><issn>1012-0394</issn><issn>1662-9779</issn><issn>1662-9779</issn><isbn>9783038356264</isbn><isbn>3038356263</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkN1LwzAUxYMfoM79DwHxzXb5aJvkQWRU54SBw-qjhKxNu4y1nUnG2H9vxoS9-nTh3nPu4fwAuMcoThDho91uF7vS6M6b2pRxp_2oKOYxSXmciDNwjbOMRIIxcQ6GgnGKKKdpRrLkItwQJhGiIrkCN86tEKKYY34Nvp9VqxoN57ZvrHbO9B1UXQUnVjVtSFL-sDEdHPu-Nc6b8gEWpmvWGuZ277xaw7zfbLSFysOpaZaw8FYF_Yfy2t2Cy1qtnR7-zQH4mrx85tNo9v76lo9nUUkQFxFDWUUqzlhaUVonVSYSLDBOGWdpkrIFZoIoLCpVM0xrVC-4FlzQimNdkowTOgB3x78b2_9stfNy1W9tFyIlyVIUulOGgurxqCpt75zVtdxY0yq7lxjJA2EZCMsTYRkIy0BYBsIyEcH_dPSHhp3zulyeYv734Rd3Folq</recordid><startdate>20161208</startdate><enddate>20161208</enddate><creator>Dickel, Doyl E.</creator><creator>Danielson, Kent</creator><creator>Williams, Neil</creator><creator>Hammi, Youssef</creator><creator>Huddleston, Bradley D.</creator><creator>Horstemeyer, Mark F.</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-2760-8812</orcidid></search><sort><creationdate>20161208</creationdate><title>Damage Progression and Fragmentation in Atomistic, Single Crystal Copper at High Strain Rates</title><author>Dickel, Doyl E. ; Danielson, Kent ; Williams, Neil ; Hammi, Youssef ; Huddleston, Bradley D. ; Horstemeyer, Mark F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2089-706d2d8775d33f4d694191157875457b1792a19daf713f0fb8e9893d81ec26823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Copper</topic><topic>Damage</topic><topic>Density</topic><topic>Fragmentation</topic><topic>High strain rate</topic><topic>Molecular dynamics</topic><topic>Simulation</topic><topic>Single crystals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dickel, Doyl E.</creatorcontrib><creatorcontrib>Danielson, Kent</creatorcontrib><creatorcontrib>Williams, Neil</creatorcontrib><creatorcontrib>Hammi, Youssef</creatorcontrib><creatorcontrib>Huddleston, Bradley D.</creatorcontrib><creatorcontrib>Horstemeyer, Mark F.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Solid State Phenomena</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dickel, Doyl E.</au><au>Danielson, Kent</au><au>Williams, Neil</au><au>Hammi, Youssef</au><au>Huddleston, Bradley D.</au><au>Horstemeyer, Mark F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Damage Progression and Fragmentation in Atomistic, Single Crystal Copper at High Strain Rates</atitle><jtitle>Solid State Phenomena</jtitle><date>2016-12-08</date><risdate>2016</risdate><volume>258</volume><spage>49</spage><epage>52</epage><pages>49-52</pages><issn>1012-0394</issn><issn>1662-9779</issn><eissn>1662-9779</eissn><isbn>9783038356264</isbn><isbn>3038356263</isbn><abstract>We show a correlation between nanoscale damage and fragmentation length scale through atomistic simulations. We simulated homogeneously expanding perfect, single crystal copper at rates ranging from 1E+08 to 3E+10 s-1 and temperatures from 200 to 1000 K. Damage was quantified in terms of void number density, average void volume, and void volume fraction. We quantified fragmentation size in terms of a length scale parameter, the solid volume per void surface area. A-1⁄2 power law relationship between the fragment length scale and strain rate was observed following the predictions of Mott. The fragmentation length scale and the maximum void number density are strongly correlated for this damage mechanism. We can scale up the relationships between damage and fragmentation observed in the molecular dynamics simulations to motivate a continuum scale fragmentation model.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/SSP.258.49</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-2760-8812</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1012-0394
ispartof Solid State Phenomena, 2016-12, Vol.258, p.49-52
issn 1012-0394
1662-9779
1662-9779
language eng
recordid cdi_proquest_journals_2650012370
source Scientific.net Journals
subjects Copper
Damage
Density
Fragmentation
High strain rate
Molecular dynamics
Simulation
Single crystals
title Damage Progression and Fragmentation in Atomistic, Single Crystal Copper at High Strain Rates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T02%3A09%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Damage%20Progression%20and%20Fragmentation%20in%20Atomistic,%20Single%20Crystal%20Copper%20at%20High%20Strain%20Rates&rft.jtitle=Solid%20State%20Phenomena&rft.au=Dickel,%20Doyl%20E.&rft.date=2016-12-08&rft.volume=258&rft.spage=49&rft.epage=52&rft.pages=49-52&rft.issn=1012-0394&rft.eissn=1662-9779&rft.isbn=9783038356264&rft.isbn_list=3038356263&rft_id=info:doi/10.4028/www.scientific.net/SSP.258.49&rft_dat=%3Cproquest_cross%3E2650012370%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2650012370&rft_id=info:pmid/&rfr_iscdi=true