Hybrid Impedance-Sliding Mode Switching Control of the Indego Explorer Lower-Limb Exoskeleton in Able-Bodied Walking
This paper proposes a novel hybrid controller for promoting safe human-robot interaction. The hybrid controller modifies a model-based impedance controller such that it uses impedance control but switches to sliding mode control under non-nominal conditions. Each control law is formulated with an in...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent & robotic systems 2022-04, Vol.104 (4), Article 76 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Journal of intelligent & robotic systems |
container_volume | 104 |
creator | Laubscher, Curt A. Goo, Anthony Farris, Ryan J. Sawicki, Jerzy T. |
description | This paper proposes a novel hybrid controller for promoting safe human-robot interaction. The hybrid controller modifies a model-based impedance controller such that it uses impedance control but switches to sliding mode control under non-nominal conditions. Each control law is formulated with an inner-loop controller for feedback linearization and an outer-loop feedback controller for trajectory tracking. The outer-loop feedback torque is theoretically proven to have a smaller magnitude in hybrid control than in impedance control under an assumed condition, suggesting it may be the safer approach. To validate the mathematical assumption and purpose of the controller, a walking experiment is conducted where a healthy able-bodied subject using a lower-limb exoskeleton is randomly subjected to either hybrid or impedance control. Perturbations are induced through sudden changes in treadmill speed, resulting in operation outside nominal conditions for 15.9% of the experiment. The assumption made in the theory holds true for the majority of the experiment, failing only 14.3% of the time. The main results show a statistically significant reduction in average feedback torque magnitudes by 7.9%. This is accomplished without drastically affecting gait, with joint angle root-mean-square differences being 0.36° for the hip and 0.64° for the knee. This demonstrates how the hybrid controller can achieve similar gait patterns with lower feedback torque magnitudes, suggesting it is a promising alternative to impedance control. |
doi_str_mv | 10.1007/s10846-022-01583-7 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2649845553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A729524049</galeid><sourcerecordid>A729524049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-8856dc65052fa327b4317308c4c60ace67e3af59b8496ae1e5cfd626120177a73</originalsourceid><addsrcrecordid>eNp9UctuFDEQHCGQWAI_wMkSZyd-jF_HZRWSlRZxCFGOlsfu2TiZtRd7opC_j5dB4ob60OrqquqWqus-U3JOCVEXlRLdS0wYw4QKzbF6062oUByTnpi33YoYRtvayPfdh1ofCCFGC7Pq5uuXocSAtocjBJc84Jsphpj26HsOgG6e4-zvT-Mmp7nkCeURzfeAtinAPqPL38cpFyhol5-h4F08DA3L9REmmHNCMaH1MAH-mkOEgO7c9NjMPnbvRjdV-PS3n3W33y5_bq7x7sfVdrPeYc-FnrHWQgYvBRFsdJypoedUcaJ97yVxHqQC7kZhBt0b6YCC8GOQTFJGqFJO8bPuy-J7LPnXE9TZPuSnktpJy2RvdC-E4I11vrD2bgIb05jn4nyrAIfoc4IxNnytmBGsJ71pArYIfMm1FhjtscSDKy-WEnuKwy5x2BaH_ROHPf3CF1Ft5LSH8u-X_6heAXwEjJ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649845553</pqid></control><display><type>article</type><title>Hybrid Impedance-Sliding Mode Switching Control of the Indego Explorer Lower-Limb Exoskeleton in Able-Bodied Walking</title><source>SpringerLink Journals - AutoHoldings</source><creator>Laubscher, Curt A. ; Goo, Anthony ; Farris, Ryan J. ; Sawicki, Jerzy T.</creator><creatorcontrib>Laubscher, Curt A. ; Goo, Anthony ; Farris, Ryan J. ; Sawicki, Jerzy T.</creatorcontrib><description>This paper proposes a novel hybrid controller for promoting safe human-robot interaction. The hybrid controller modifies a model-based impedance controller such that it uses impedance control but switches to sliding mode control under non-nominal conditions. Each control law is formulated with an inner-loop controller for feedback linearization and an outer-loop feedback controller for trajectory tracking. The outer-loop feedback torque is theoretically proven to have a smaller magnitude in hybrid control than in impedance control under an assumed condition, suggesting it may be the safer approach. To validate the mathematical assumption and purpose of the controller, a walking experiment is conducted where a healthy able-bodied subject using a lower-limb exoskeleton is randomly subjected to either hybrid or impedance control. Perturbations are induced through sudden changes in treadmill speed, resulting in operation outside nominal conditions for 15.9% of the experiment. The assumption made in the theory holds true for the majority of the experiment, failing only 14.3% of the time. The main results show a statistically significant reduction in average feedback torque magnitudes by 7.9%. This is accomplished without drastically affecting gait, with joint angle root-mean-square differences being 0.36° for the hip and 0.64° for the knee. This demonstrates how the hybrid controller can achieve similar gait patterns with lower feedback torque magnitudes, suggesting it is a promising alternative to impedance control.</description><identifier>ISSN: 0921-0296</identifier><identifier>EISSN: 1573-0409</identifier><identifier>DOI: 10.1007/s10846-022-01583-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Analysis ; Artificial Intelligence ; Control ; Control systems ; Control theory ; Electrical Engineering ; Engineering ; Exoskeletons ; Experiments ; Feedback control ; Feedback linearization ; Gait ; Human engineering ; Hybrid control ; Impedance ; Laws, regulations and rules ; Mechanical Engineering ; Mechatronics ; Perturbation ; Robotics ; Robots ; Short Paper ; Sliding mode control ; Switches ; Torque ; Tracking control ; Trajectory control ; Treadmills ; Walking</subject><ispartof>Journal of intelligent & robotic systems, 2022-04, Vol.104 (4), Article 76</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-8856dc65052fa327b4317308c4c60ace67e3af59b8496ae1e5cfd626120177a73</citedby><cites>FETCH-LOGICAL-c358t-8856dc65052fa327b4317308c4c60ace67e3af59b8496ae1e5cfd626120177a73</cites><orcidid>0000-0002-1564-4576 ; 0000-0003-3513-8184 ; 0000-0003-0319-3437 ; 0000-0002-7781-2715</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10846-022-01583-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10846-022-01583-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Laubscher, Curt A.</creatorcontrib><creatorcontrib>Goo, Anthony</creatorcontrib><creatorcontrib>Farris, Ryan J.</creatorcontrib><creatorcontrib>Sawicki, Jerzy T.</creatorcontrib><title>Hybrid Impedance-Sliding Mode Switching Control of the Indego Explorer Lower-Limb Exoskeleton in Able-Bodied Walking</title><title>Journal of intelligent & robotic systems</title><addtitle>J Intell Robot Syst</addtitle><description>This paper proposes a novel hybrid controller for promoting safe human-robot interaction. The hybrid controller modifies a model-based impedance controller such that it uses impedance control but switches to sliding mode control under non-nominal conditions. Each control law is formulated with an inner-loop controller for feedback linearization and an outer-loop feedback controller for trajectory tracking. The outer-loop feedback torque is theoretically proven to have a smaller magnitude in hybrid control than in impedance control under an assumed condition, suggesting it may be the safer approach. To validate the mathematical assumption and purpose of the controller, a walking experiment is conducted where a healthy able-bodied subject using a lower-limb exoskeleton is randomly subjected to either hybrid or impedance control. Perturbations are induced through sudden changes in treadmill speed, resulting in operation outside nominal conditions for 15.9% of the experiment. The assumption made in the theory holds true for the majority of the experiment, failing only 14.3% of the time. The main results show a statistically significant reduction in average feedback torque magnitudes by 7.9%. This is accomplished without drastically affecting gait, with joint angle root-mean-square differences being 0.36° for the hip and 0.64° for the knee. This demonstrates how the hybrid controller can achieve similar gait patterns with lower feedback torque magnitudes, suggesting it is a promising alternative to impedance control.</description><subject>Analysis</subject><subject>Artificial Intelligence</subject><subject>Control</subject><subject>Control systems</subject><subject>Control theory</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Exoskeletons</subject><subject>Experiments</subject><subject>Feedback control</subject><subject>Feedback linearization</subject><subject>Gait</subject><subject>Human engineering</subject><subject>Hybrid control</subject><subject>Impedance</subject><subject>Laws, regulations and rules</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Perturbation</subject><subject>Robotics</subject><subject>Robots</subject><subject>Short Paper</subject><subject>Sliding mode control</subject><subject>Switches</subject><subject>Torque</subject><subject>Tracking control</subject><subject>Trajectory control</subject><subject>Treadmills</subject><subject>Walking</subject><issn>0921-0296</issn><issn>1573-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9UctuFDEQHCGQWAI_wMkSZyd-jF_HZRWSlRZxCFGOlsfu2TiZtRd7opC_j5dB4ob60OrqquqWqus-U3JOCVEXlRLdS0wYw4QKzbF6062oUByTnpi33YoYRtvayPfdh1ofCCFGC7Pq5uuXocSAtocjBJc84Jsphpj26HsOgG6e4-zvT-Mmp7nkCeURzfeAtinAPqPL38cpFyhol5-h4F08DA3L9REmmHNCMaH1MAH-mkOEgO7c9NjMPnbvRjdV-PS3n3W33y5_bq7x7sfVdrPeYc-FnrHWQgYvBRFsdJypoedUcaJ97yVxHqQC7kZhBt0b6YCC8GOQTFJGqFJO8bPuy-J7LPnXE9TZPuSnktpJy2RvdC-E4I11vrD2bgIb05jn4nyrAIfoc4IxNnytmBGsJ71pArYIfMm1FhjtscSDKy-WEnuKwy5x2BaH_ROHPf3CF1Ft5LSH8u-X_6heAXwEjJ0</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Laubscher, Curt A.</creator><creator>Goo, Anthony</creator><creator>Farris, Ryan J.</creator><creator>Sawicki, Jerzy T.</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-1564-4576</orcidid><orcidid>https://orcid.org/0000-0003-3513-8184</orcidid><orcidid>https://orcid.org/0000-0003-0319-3437</orcidid><orcidid>https://orcid.org/0000-0002-7781-2715</orcidid></search><sort><creationdate>20220401</creationdate><title>Hybrid Impedance-Sliding Mode Switching Control of the Indego Explorer Lower-Limb Exoskeleton in Able-Bodied Walking</title><author>Laubscher, Curt A. ; Goo, Anthony ; Farris, Ryan J. ; Sawicki, Jerzy T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-8856dc65052fa327b4317308c4c60ace67e3af59b8496ae1e5cfd626120177a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Artificial Intelligence</topic><topic>Control</topic><topic>Control systems</topic><topic>Control theory</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Exoskeletons</topic><topic>Experiments</topic><topic>Feedback control</topic><topic>Feedback linearization</topic><topic>Gait</topic><topic>Human engineering</topic><topic>Hybrid control</topic><topic>Impedance</topic><topic>Laws, regulations and rules</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Perturbation</topic><topic>Robotics</topic><topic>Robots</topic><topic>Short Paper</topic><topic>Sliding mode control</topic><topic>Switches</topic><topic>Torque</topic><topic>Tracking control</topic><topic>Trajectory control</topic><topic>Treadmills</topic><topic>Walking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laubscher, Curt A.</creatorcontrib><creatorcontrib>Goo, Anthony</creatorcontrib><creatorcontrib>Farris, Ryan J.</creatorcontrib><creatorcontrib>Sawicki, Jerzy T.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of intelligent & robotic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laubscher, Curt A.</au><au>Goo, Anthony</au><au>Farris, Ryan J.</au><au>Sawicki, Jerzy T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Impedance-Sliding Mode Switching Control of the Indego Explorer Lower-Limb Exoskeleton in Able-Bodied Walking</atitle><jtitle>Journal of intelligent & robotic systems</jtitle><stitle>J Intell Robot Syst</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>104</volume><issue>4</issue><artnum>76</artnum><issn>0921-0296</issn><eissn>1573-0409</eissn><abstract>This paper proposes a novel hybrid controller for promoting safe human-robot interaction. The hybrid controller modifies a model-based impedance controller such that it uses impedance control but switches to sliding mode control under non-nominal conditions. Each control law is formulated with an inner-loop controller for feedback linearization and an outer-loop feedback controller for trajectory tracking. The outer-loop feedback torque is theoretically proven to have a smaller magnitude in hybrid control than in impedance control under an assumed condition, suggesting it may be the safer approach. To validate the mathematical assumption and purpose of the controller, a walking experiment is conducted where a healthy able-bodied subject using a lower-limb exoskeleton is randomly subjected to either hybrid or impedance control. Perturbations are induced through sudden changes in treadmill speed, resulting in operation outside nominal conditions for 15.9% of the experiment. The assumption made in the theory holds true for the majority of the experiment, failing only 14.3% of the time. The main results show a statistically significant reduction in average feedback torque magnitudes by 7.9%. This is accomplished without drastically affecting gait, with joint angle root-mean-square differences being 0.36° for the hip and 0.64° for the knee. This demonstrates how the hybrid controller can achieve similar gait patterns with lower feedback torque magnitudes, suggesting it is a promising alternative to impedance control.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10846-022-01583-7</doi><orcidid>https://orcid.org/0000-0002-1564-4576</orcidid><orcidid>https://orcid.org/0000-0003-3513-8184</orcidid><orcidid>https://orcid.org/0000-0003-0319-3437</orcidid><orcidid>https://orcid.org/0000-0002-7781-2715</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-0296 |
ispartof | Journal of intelligent & robotic systems, 2022-04, Vol.104 (4), Article 76 |
issn | 0921-0296 1573-0409 |
language | eng |
recordid | cdi_proquest_journals_2649845553 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis Artificial Intelligence Control Control systems Control theory Electrical Engineering Engineering Exoskeletons Experiments Feedback control Feedback linearization Gait Human engineering Hybrid control Impedance Laws, regulations and rules Mechanical Engineering Mechatronics Perturbation Robotics Robots Short Paper Sliding mode control Switches Torque Tracking control Trajectory control Treadmills Walking |
title | Hybrid Impedance-Sliding Mode Switching Control of the Indego Explorer Lower-Limb Exoskeleton in Able-Bodied Walking |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T12%3A21%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Impedance-Sliding%20Mode%20Switching%20Control%20of%20the%20Indego%20Explorer%20Lower-Limb%20Exoskeleton%20in%20Able-Bodied%20Walking&rft.jtitle=Journal%20of%20intelligent%20&%20robotic%20systems&rft.au=Laubscher,%20Curt%20A.&rft.date=2022-04-01&rft.volume=104&rft.issue=4&rft.artnum=76&rft.issn=0921-0296&rft.eissn=1573-0409&rft_id=info:doi/10.1007/s10846-022-01583-7&rft_dat=%3Cgale_proqu%3EA729524049%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2649845553&rft_id=info:pmid/&rft_galeid=A729524049&rfr_iscdi=true |