A hybrid approach for high precision prediction of gas flows

About 23% of the German energy demand is supplied by natural gas. Additionally, for about the same amount Germany serves as a transit country. Thereby, the German network represents a central hub in the European natural gas transport network. The transport infrastructure is operated by transmissions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy systems (Berlin. Periodical) 2022-05, Vol.13 (2), p.383-408
Hauptverfasser: Petkovic, Milena, Chen, Ying, Gamrath, Inken, Gotzes, Uwe, Hadjidimitrou, Natalia Selini, Zittel, Janina, Xu, Xiaofei, Koch, Thorsten
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 408
container_issue 2
container_start_page 383
container_title Energy systems (Berlin. Periodical)
container_volume 13
creator Petkovic, Milena
Chen, Ying
Gamrath, Inken
Gotzes, Uwe
Hadjidimitrou, Natalia Selini
Zittel, Janina
Xu, Xiaofei
Koch, Thorsten
description About 23% of the German energy demand is supplied by natural gas. Additionally, for about the same amount Germany serves as a transit country. Thereby, the German network represents a central hub in the European natural gas transport network. The transport infrastructure is operated by transmissions system operators (TSOs). The number one priority of the TSOs is to ensure the security of supply. However, the TSOs have only very limited knowledge about the intentions and planned actions of the shippers (traders). Open Grid Europe (OGE), one of Germany's largest TSO, operates a high-pressure transport network of about 12,000 km length. With the introduction of peak-load gas power stations, it is of great importance to predict in- and out-flow of the network to ensure the necessary flexibility and security of supply for the German Energy Transition ("Energiewende"). In this paper, we introduce a novel hybrid forecast method applied to gas flows at the boundary nodes of a transport network. This method employs an optimized feature selection and minimization. We use a combination of a FAR, LSTM and mathematical programming to achieve robust high-quality forecasts on real-world data for different types of network nodes.
doi_str_mv 10.1007/s12667-021-00466-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2649845353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2649845353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-4c581c122ac3fd219c752d9c875a4d8b9c04488b43f423d253a68a592e4cfe733</originalsourceid><addsrcrecordid>eNp9kE1LAzEYhIMoWGr_gCAEPEfznSx4KcUvKHjRc0izSTelbtZki_Tfu-sKevI0c5hn3pcB4JLgG4Kxui2ESqkQpgRhzKVE_ATMiJYasUqJ0z_-HCxK2WGMCVaUYjkDd0vYHDc51tB2XU7WNTCkDJu4bWCXvYslpnZ0dXT9aFOAW1tg2KfPcgHOgt0Xv_jROXh7uH9dPaH1y-PzarlGjjHZI-6EJo5Qah0LNSWVU4LWldNKWF7rTeUw51pvOAucspoKZqW2oqKeu-AVY3NwPfUOH34cfOnNLh1yO5w0VPJKc8HEmKJTyuVUSvbBdDm-23w0BJtxKDMNZYahzPdQhg8Qm6AyhNutz7_V_1JXE-VdamMxo5Q-ZUO1woyzL_8Vc2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649845353</pqid></control><display><type>article</type><title>A hybrid approach for high precision prediction of gas flows</title><source>Springer Nature - Complete Springer Journals</source><creator>Petkovic, Milena ; Chen, Ying ; Gamrath, Inken ; Gotzes, Uwe ; Hadjidimitrou, Natalia Selini ; Zittel, Janina ; Xu, Xiaofei ; Koch, Thorsten</creator><creatorcontrib>Petkovic, Milena ; Chen, Ying ; Gamrath, Inken ; Gotzes, Uwe ; Hadjidimitrou, Natalia Selini ; Zittel, Janina ; Xu, Xiaofei ; Koch, Thorsten</creatorcontrib><description>About 23% of the German energy demand is supplied by natural gas. Additionally, for about the same amount Germany serves as a transit country. Thereby, the German network represents a central hub in the European natural gas transport network. The transport infrastructure is operated by transmissions system operators (TSOs). The number one priority of the TSOs is to ensure the security of supply. However, the TSOs have only very limited knowledge about the intentions and planned actions of the shippers (traders). Open Grid Europe (OGE), one of Germany's largest TSO, operates a high-pressure transport network of about 12,000 km length. With the introduction of peak-load gas power stations, it is of great importance to predict in- and out-flow of the network to ensure the necessary flexibility and security of supply for the German Energy Transition ("Energiewende"). In this paper, we introduce a novel hybrid forecast method applied to gas flows at the boundary nodes of a transport network. This method employs an optimized feature selection and minimization. We use a combination of a FAR, LSTM and mathematical programming to achieve robust high-quality forecasts on real-world data for different types of network nodes.</description><identifier>ISSN: 1868-3975</identifier><identifier>ISSN: 1868-3967</identifier><identifier>EISSN: 1868-3975</identifier><identifier>DOI: 10.1007/s12667-021-00466-4</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer</publisher><subject>Economics and Management ; Energy ; Energy demand ; Energy Policy ; Energy Systems ; FAR ; Gas flow ; Gas forecast ; Hybrid method ; LSTM ; Mathematical optimisation ; Mathematical programming ; Natural gas ; Nodes ; Operations Research/Decision Theory ; Operators (mathematics) ; Optimization ; Original Paper ; Peak load ; Power plants ; Robustness (mathematics) ; Security ; Time series ; Transportation networks</subject><ispartof>Energy systems (Berlin. Periodical), 2022-05, Vol.13 (2), p.383-408</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c336t-4c581c122ac3fd219c752d9c875a4d8b9c04488b43f423d253a68a592e4cfe733</cites><orcidid>0000-0002-1967-0077 ; 0000-0002-2577-7348 ; 0000-0002-0731-0314 ; 0000-0002-8019-9245 ; 0000-0001-9695-8085 ; 0000-0003-1632-4846</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12667-021-00466-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12667-021-00466-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Petkovic, Milena</creatorcontrib><creatorcontrib>Chen, Ying</creatorcontrib><creatorcontrib>Gamrath, Inken</creatorcontrib><creatorcontrib>Gotzes, Uwe</creatorcontrib><creatorcontrib>Hadjidimitrou, Natalia Selini</creatorcontrib><creatorcontrib>Zittel, Janina</creatorcontrib><creatorcontrib>Xu, Xiaofei</creatorcontrib><creatorcontrib>Koch, Thorsten</creatorcontrib><title>A hybrid approach for high precision prediction of gas flows</title><title>Energy systems (Berlin. Periodical)</title><addtitle>Energy Syst</addtitle><description>About 23% of the German energy demand is supplied by natural gas. Additionally, for about the same amount Germany serves as a transit country. Thereby, the German network represents a central hub in the European natural gas transport network. The transport infrastructure is operated by transmissions system operators (TSOs). The number one priority of the TSOs is to ensure the security of supply. However, the TSOs have only very limited knowledge about the intentions and planned actions of the shippers (traders). Open Grid Europe (OGE), one of Germany's largest TSO, operates a high-pressure transport network of about 12,000 km length. With the introduction of peak-load gas power stations, it is of great importance to predict in- and out-flow of the network to ensure the necessary flexibility and security of supply for the German Energy Transition ("Energiewende"). In this paper, we introduce a novel hybrid forecast method applied to gas flows at the boundary nodes of a transport network. This method employs an optimized feature selection and minimization. We use a combination of a FAR, LSTM and mathematical programming to achieve robust high-quality forecasts on real-world data for different types of network nodes.</description><subject>Economics and Management</subject><subject>Energy</subject><subject>Energy demand</subject><subject>Energy Policy</subject><subject>Energy Systems</subject><subject>FAR</subject><subject>Gas flow</subject><subject>Gas forecast</subject><subject>Hybrid method</subject><subject>LSTM</subject><subject>Mathematical optimisation</subject><subject>Mathematical programming</subject><subject>Natural gas</subject><subject>Nodes</subject><subject>Operations Research/Decision Theory</subject><subject>Operators (mathematics)</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Peak load</subject><subject>Power plants</subject><subject>Robustness (mathematics)</subject><subject>Security</subject><subject>Time series</subject><subject>Transportation networks</subject><issn>1868-3975</issn><issn>1868-3967</issn><issn>1868-3975</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LAzEYhIMoWGr_gCAEPEfznSx4KcUvKHjRc0izSTelbtZki_Tfu-sKevI0c5hn3pcB4JLgG4Kxui2ESqkQpgRhzKVE_ATMiJYasUqJ0z_-HCxK2WGMCVaUYjkDd0vYHDc51tB2XU7WNTCkDJu4bWCXvYslpnZ0dXT9aFOAW1tg2KfPcgHOgt0Xv_jROXh7uH9dPaH1y-PzarlGjjHZI-6EJo5Qah0LNSWVU4LWldNKWF7rTeUw51pvOAucspoKZqW2oqKeu-AVY3NwPfUOH34cfOnNLh1yO5w0VPJKc8HEmKJTyuVUSvbBdDm-23w0BJtxKDMNZYahzPdQhg8Qm6AyhNutz7_V_1JXE-VdamMxo5Q-ZUO1woyzL_8Vc2A</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Petkovic, Milena</creator><creator>Chen, Ying</creator><creator>Gamrath, Inken</creator><creator>Gotzes, Uwe</creator><creator>Hadjidimitrou, Natalia Selini</creator><creator>Zittel, Janina</creator><creator>Xu, Xiaofei</creator><creator>Koch, Thorsten</creator><general>Springer</general><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>OT2</scope><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-1967-0077</orcidid><orcidid>https://orcid.org/0000-0002-2577-7348</orcidid><orcidid>https://orcid.org/0000-0002-0731-0314</orcidid><orcidid>https://orcid.org/0000-0002-8019-9245</orcidid><orcidid>https://orcid.org/0000-0001-9695-8085</orcidid><orcidid>https://orcid.org/0000-0003-1632-4846</orcidid></search><sort><creationdate>20220501</creationdate><title>A hybrid approach for high precision prediction of gas flows</title><author>Petkovic, Milena ; Chen, Ying ; Gamrath, Inken ; Gotzes, Uwe ; Hadjidimitrou, Natalia Selini ; Zittel, Janina ; Xu, Xiaofei ; Koch, Thorsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-4c581c122ac3fd219c752d9c875a4d8b9c04488b43f423d253a68a592e4cfe733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Economics and Management</topic><topic>Energy</topic><topic>Energy demand</topic><topic>Energy Policy</topic><topic>Energy Systems</topic><topic>FAR</topic><topic>Gas flow</topic><topic>Gas forecast</topic><topic>Hybrid method</topic><topic>LSTM</topic><topic>Mathematical optimisation</topic><topic>Mathematical programming</topic><topic>Natural gas</topic><topic>Nodes</topic><topic>Operations Research/Decision Theory</topic><topic>Operators (mathematics)</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Peak load</topic><topic>Power plants</topic><topic>Robustness (mathematics)</topic><topic>Security</topic><topic>Time series</topic><topic>Transportation networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petkovic, Milena</creatorcontrib><creatorcontrib>Chen, Ying</creatorcontrib><creatorcontrib>Gamrath, Inken</creatorcontrib><creatorcontrib>Gotzes, Uwe</creatorcontrib><creatorcontrib>Hadjidimitrou, Natalia Selini</creatorcontrib><creatorcontrib>Zittel, Janina</creatorcontrib><creatorcontrib>Xu, Xiaofei</creatorcontrib><creatorcontrib>Koch, Thorsten</creatorcontrib><collection>EconStor</collection><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Energy systems (Berlin. Periodical)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petkovic, Milena</au><au>Chen, Ying</au><au>Gamrath, Inken</au><au>Gotzes, Uwe</au><au>Hadjidimitrou, Natalia Selini</au><au>Zittel, Janina</au><au>Xu, Xiaofei</au><au>Koch, Thorsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hybrid approach for high precision prediction of gas flows</atitle><jtitle>Energy systems (Berlin. Periodical)</jtitle><stitle>Energy Syst</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>13</volume><issue>2</issue><spage>383</spage><epage>408</epage><pages>383-408</pages><issn>1868-3975</issn><issn>1868-3967</issn><eissn>1868-3975</eissn><abstract>About 23% of the German energy demand is supplied by natural gas. Additionally, for about the same amount Germany serves as a transit country. Thereby, the German network represents a central hub in the European natural gas transport network. The transport infrastructure is operated by transmissions system operators (TSOs). The number one priority of the TSOs is to ensure the security of supply. However, the TSOs have only very limited knowledge about the intentions and planned actions of the shippers (traders). Open Grid Europe (OGE), one of Germany's largest TSO, operates a high-pressure transport network of about 12,000 km length. With the introduction of peak-load gas power stations, it is of great importance to predict in- and out-flow of the network to ensure the necessary flexibility and security of supply for the German Energy Transition ("Energiewende"). In this paper, we introduce a novel hybrid forecast method applied to gas flows at the boundary nodes of a transport network. This method employs an optimized feature selection and minimization. We use a combination of a FAR, LSTM and mathematical programming to achieve robust high-quality forecasts on real-world data for different types of network nodes.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer</pub><doi>10.1007/s12667-021-00466-4</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-1967-0077</orcidid><orcidid>https://orcid.org/0000-0002-2577-7348</orcidid><orcidid>https://orcid.org/0000-0002-0731-0314</orcidid><orcidid>https://orcid.org/0000-0002-8019-9245</orcidid><orcidid>https://orcid.org/0000-0001-9695-8085</orcidid><orcidid>https://orcid.org/0000-0003-1632-4846</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1868-3975
ispartof Energy systems (Berlin. Periodical), 2022-05, Vol.13 (2), p.383-408
issn 1868-3975
1868-3967
1868-3975
language eng
recordid cdi_proquest_journals_2649845353
source Springer Nature - Complete Springer Journals
subjects Economics and Management
Energy
Energy demand
Energy Policy
Energy Systems
FAR
Gas flow
Gas forecast
Hybrid method
LSTM
Mathematical optimisation
Mathematical programming
Natural gas
Nodes
Operations Research/Decision Theory
Operators (mathematics)
Optimization
Original Paper
Peak load
Power plants
Robustness (mathematics)
Security
Time series
Transportation networks
title A hybrid approach for high precision prediction of gas flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T13%3A10%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hybrid%20approach%20for%20high%20precision%20prediction%20of%20gas%20flows&rft.jtitle=Energy%20systems%20(Berlin.%20Periodical)&rft.au=Petkovic,%20Milena&rft.date=2022-05-01&rft.volume=13&rft.issue=2&rft.spage=383&rft.epage=408&rft.pages=383-408&rft.issn=1868-3975&rft.eissn=1868-3975&rft_id=info:doi/10.1007/s12667-021-00466-4&rft_dat=%3Cproquest_cross%3E2649845353%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2649845353&rft_id=info:pmid/&rfr_iscdi=true