A Methodology for Consistent Georegistration in Underwater Hyperspectral Imaging
This article proposes a novel methodology for precise georegistration in underwater hyperspectral imaging (UHI) using a red-green-blue (RGB) camera to build a photogrammetry model that estimates the pose and a 3-D seabed model. The two main scientific contributions are: 1) the development of two met...
Gespeichert in:
Veröffentlicht in: | IEEE journal of oceanic engineering 2022-04, Vol.47 (2), p.331-349 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 349 |
---|---|
container_issue | 2 |
container_start_page | 331 |
container_title | IEEE journal of oceanic engineering |
container_volume | 47 |
creator | Lovas, Havard Snefjella Mogstad, Aksel Alstad Sorensen, Asgeir J. Johnsen, Geir |
description | This article proposes a novel methodology for precise georegistration in underwater hyperspectral imaging (UHI) using a red-green-blue (RGB) camera to build a photogrammetry model that estimates the pose and a 3-D seabed model. The two main scientific contributions are: 1) the development of two methods for geometric calibration of the hyperspectral imager (HSI) with the RGB camera and 2) the development of a methodology for consistent georegistration of the pushbroom hyperspectral imagery on the seabed using the photogrammetry model and the geometrically calibrated HSI. The georegistration uses a calibrated RGB camera, fixed to the HSI, with an overlapping field of view. The RGB images are used to build a photogrammetry model. Through utilizing the geometric HSI parameters from the calibration, the hyperspectral imagery is ray cast onto the 3-D model. This methodology is exemplified for UHI from a remotely operated vehicle on a cold-water coral reef in the Trondheim Fjord, Norway. The precision is unprecedented for georegistration in UHI, demonstrated by the first-ever spatially consistent UHI mosaic to contain multiple transects. |
doi_str_mv | 10.1109/JOE.2021.3108229 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2649792973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9607016</ieee_id><sourcerecordid>2649792973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-e614e644857339c0dfe5d74bd1161424f10fa3f699a5434d51dc05a5f80af1b33</originalsourceid><addsrcrecordid>eNo9kE1rAjEQhkNpofbjXugl0PPaTL52cxSxarHYQz2HuDvZrujGJivFf98VpadheJ93Bh5CnoANAZh5fV9OhpxxGApgBefmigxAqSIDbeCaDJjQMjNMmVtyl9KGMZAyNwPyOaIf2H2HKmxDfaQ-RDoObWpSh21Hpxgi1v0SXdeEljYtXbUVxl_XYaSz4x5j2mPZx1s637m6aesHcuPdNuHjZd6T1dvkazzLFsvpfDxaZCXn0GWoQaKWslC5EKZklUdV5XJdAfQJlx6Yd8JrY5ySQlYKqpIpp3zBnIe1EPfk5Xx3H8PPAVNnN-EQ2_6l5Vqa3HCTnyh2psoYUoro7T42OxePFpg9ebO9N3vyZi_e-srzudIg4j9uNMsZaPEHpEhpDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649792973</pqid></control><display><type>article</type><title>A Methodology for Consistent Georegistration in Underwater Hyperspectral Imaging</title><source>IEEE Electronic Library (IEL)</source><creator>Lovas, Havard Snefjella ; Mogstad, Aksel Alstad ; Sorensen, Asgeir J. ; Johnsen, Geir</creator><creatorcontrib>Lovas, Havard Snefjella ; Mogstad, Aksel Alstad ; Sorensen, Asgeir J. ; Johnsen, Geir</creatorcontrib><description>This article proposes a novel methodology for precise georegistration in underwater hyperspectral imaging (UHI) using a red-green-blue (RGB) camera to build a photogrammetry model that estimates the pose and a 3-D seabed model. The two main scientific contributions are: 1) the development of two methods for geometric calibration of the hyperspectral imager (HSI) with the RGB camera and 2) the development of a methodology for consistent georegistration of the pushbroom hyperspectral imagery on the seabed using the photogrammetry model and the geometrically calibrated HSI. The georegistration uses a calibrated RGB camera, fixed to the HSI, with an overlapping field of view. The RGB images are used to build a photogrammetry model. Through utilizing the geometric HSI parameters from the calibration, the hyperspectral imagery is ray cast onto the 3-D model. This methodology is exemplified for UHI from a remotely operated vehicle on a cold-water coral reef in the Trondheim Fjord, Norway. The precision is unprecedented for georegistration in UHI, demonstrated by the first-ever spatially consistent UHI mosaic to contain multiple transects.</description><identifier>ISSN: 0364-9059</identifier><identifier>EISSN: 1558-1691</identifier><identifier>DOI: 10.1109/JOE.2021.3108229</identifier><identifier>CODEN: IJOEDY</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Calibration ; Cameras ; Color imagery ; Coral reefs ; Distortion ; Field of view ; Fjords ; Hyperspectral imaging ; Imagery ; Imaging techniques ; Laboratories ; Mapping and monitoring ; Mathematical models ; Methodology ; Ocean floor ; Photogrammetry ; Position measurement ; Remotely operated vehicles ; Solid modeling ; Three dimensional models ; Underwater ; underwater hyperspectral imaging (UHI) ; Water temperature</subject><ispartof>IEEE journal of oceanic engineering, 2022-04, Vol.47 (2), p.331-349</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-e614e644857339c0dfe5d74bd1161424f10fa3f699a5434d51dc05a5f80af1b33</citedby><cites>FETCH-LOGICAL-c221t-e614e644857339c0dfe5d74bd1161424f10fa3f699a5434d51dc05a5f80af1b33</cites><orcidid>0000-0002-4887-0860 ; 0000-0002-7078-0298 ; 0000-0003-2152-4746 ; 0000-0002-2463-5903</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9607016$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9607016$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lovas, Havard Snefjella</creatorcontrib><creatorcontrib>Mogstad, Aksel Alstad</creatorcontrib><creatorcontrib>Sorensen, Asgeir J.</creatorcontrib><creatorcontrib>Johnsen, Geir</creatorcontrib><title>A Methodology for Consistent Georegistration in Underwater Hyperspectral Imaging</title><title>IEEE journal of oceanic engineering</title><addtitle>JOE</addtitle><description>This article proposes a novel methodology for precise georegistration in underwater hyperspectral imaging (UHI) using a red-green-blue (RGB) camera to build a photogrammetry model that estimates the pose and a 3-D seabed model. The two main scientific contributions are: 1) the development of two methods for geometric calibration of the hyperspectral imager (HSI) with the RGB camera and 2) the development of a methodology for consistent georegistration of the pushbroom hyperspectral imagery on the seabed using the photogrammetry model and the geometrically calibrated HSI. The georegistration uses a calibrated RGB camera, fixed to the HSI, with an overlapping field of view. The RGB images are used to build a photogrammetry model. Through utilizing the geometric HSI parameters from the calibration, the hyperspectral imagery is ray cast onto the 3-D model. This methodology is exemplified for UHI from a remotely operated vehicle on a cold-water coral reef in the Trondheim Fjord, Norway. The precision is unprecedented for georegistration in UHI, demonstrated by the first-ever spatially consistent UHI mosaic to contain multiple transects.</description><subject>Calibration</subject><subject>Cameras</subject><subject>Color imagery</subject><subject>Coral reefs</subject><subject>Distortion</subject><subject>Field of view</subject><subject>Fjords</subject><subject>Hyperspectral imaging</subject><subject>Imagery</subject><subject>Imaging techniques</subject><subject>Laboratories</subject><subject>Mapping and monitoring</subject><subject>Mathematical models</subject><subject>Methodology</subject><subject>Ocean floor</subject><subject>Photogrammetry</subject><subject>Position measurement</subject><subject>Remotely operated vehicles</subject><subject>Solid modeling</subject><subject>Three dimensional models</subject><subject>Underwater</subject><subject>underwater hyperspectral imaging (UHI)</subject><subject>Water temperature</subject><issn>0364-9059</issn><issn>1558-1691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1rAjEQhkNpofbjXugl0PPaTL52cxSxarHYQz2HuDvZrujGJivFf98VpadheJ93Bh5CnoANAZh5fV9OhpxxGApgBefmigxAqSIDbeCaDJjQMjNMmVtyl9KGMZAyNwPyOaIf2H2HKmxDfaQ-RDoObWpSh21Hpxgi1v0SXdeEljYtXbUVxl_XYaSz4x5j2mPZx1s637m6aesHcuPdNuHjZd6T1dvkazzLFsvpfDxaZCXn0GWoQaKWslC5EKZklUdV5XJdAfQJlx6Yd8JrY5ySQlYKqpIpp3zBnIe1EPfk5Xx3H8PPAVNnN-EQ2_6l5Vqa3HCTnyh2psoYUoro7T42OxePFpg9ebO9N3vyZi_e-srzudIg4j9uNMsZaPEHpEhpDw</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Lovas, Havard Snefjella</creator><creator>Mogstad, Aksel Alstad</creator><creator>Sorensen, Asgeir J.</creator><creator>Johnsen, Geir</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4887-0860</orcidid><orcidid>https://orcid.org/0000-0002-7078-0298</orcidid><orcidid>https://orcid.org/0000-0003-2152-4746</orcidid><orcidid>https://orcid.org/0000-0002-2463-5903</orcidid></search><sort><creationdate>20220401</creationdate><title>A Methodology for Consistent Georegistration in Underwater Hyperspectral Imaging</title><author>Lovas, Havard Snefjella ; Mogstad, Aksel Alstad ; Sorensen, Asgeir J. ; Johnsen, Geir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-e614e644857339c0dfe5d74bd1161424f10fa3f699a5434d51dc05a5f80af1b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Calibration</topic><topic>Cameras</topic><topic>Color imagery</topic><topic>Coral reefs</topic><topic>Distortion</topic><topic>Field of view</topic><topic>Fjords</topic><topic>Hyperspectral imaging</topic><topic>Imagery</topic><topic>Imaging techniques</topic><topic>Laboratories</topic><topic>Mapping and monitoring</topic><topic>Mathematical models</topic><topic>Methodology</topic><topic>Ocean floor</topic><topic>Photogrammetry</topic><topic>Position measurement</topic><topic>Remotely operated vehicles</topic><topic>Solid modeling</topic><topic>Three dimensional models</topic><topic>Underwater</topic><topic>underwater hyperspectral imaging (UHI)</topic><topic>Water temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lovas, Havard Snefjella</creatorcontrib><creatorcontrib>Mogstad, Aksel Alstad</creatorcontrib><creatorcontrib>Sorensen, Asgeir J.</creatorcontrib><creatorcontrib>Johnsen, Geir</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE journal of oceanic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lovas, Havard Snefjella</au><au>Mogstad, Aksel Alstad</au><au>Sorensen, Asgeir J.</au><au>Johnsen, Geir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Methodology for Consistent Georegistration in Underwater Hyperspectral Imaging</atitle><jtitle>IEEE journal of oceanic engineering</jtitle><stitle>JOE</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>47</volume><issue>2</issue><spage>331</spage><epage>349</epage><pages>331-349</pages><issn>0364-9059</issn><eissn>1558-1691</eissn><coden>IJOEDY</coden><abstract>This article proposes a novel methodology for precise georegistration in underwater hyperspectral imaging (UHI) using a red-green-blue (RGB) camera to build a photogrammetry model that estimates the pose and a 3-D seabed model. The two main scientific contributions are: 1) the development of two methods for geometric calibration of the hyperspectral imager (HSI) with the RGB camera and 2) the development of a methodology for consistent georegistration of the pushbroom hyperspectral imagery on the seabed using the photogrammetry model and the geometrically calibrated HSI. The georegistration uses a calibrated RGB camera, fixed to the HSI, with an overlapping field of view. The RGB images are used to build a photogrammetry model. Through utilizing the geometric HSI parameters from the calibration, the hyperspectral imagery is ray cast onto the 3-D model. This methodology is exemplified for UHI from a remotely operated vehicle on a cold-water coral reef in the Trondheim Fjord, Norway. The precision is unprecedented for georegistration in UHI, demonstrated by the first-ever spatially consistent UHI mosaic to contain multiple transects.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JOE.2021.3108229</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-4887-0860</orcidid><orcidid>https://orcid.org/0000-0002-7078-0298</orcidid><orcidid>https://orcid.org/0000-0003-2152-4746</orcidid><orcidid>https://orcid.org/0000-0002-2463-5903</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0364-9059 |
ispartof | IEEE journal of oceanic engineering, 2022-04, Vol.47 (2), p.331-349 |
issn | 0364-9059 1558-1691 |
language | eng |
recordid | cdi_proquest_journals_2649792973 |
source | IEEE Electronic Library (IEL) |
subjects | Calibration Cameras Color imagery Coral reefs Distortion Field of view Fjords Hyperspectral imaging Imagery Imaging techniques Laboratories Mapping and monitoring Mathematical models Methodology Ocean floor Photogrammetry Position measurement Remotely operated vehicles Solid modeling Three dimensional models Underwater underwater hyperspectral imaging (UHI) Water temperature |
title | A Methodology for Consistent Georegistration in Underwater Hyperspectral Imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A44%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Methodology%20for%20Consistent%20Georegistration%20in%20Underwater%20Hyperspectral%20Imaging&rft.jtitle=IEEE%20journal%20of%20oceanic%20engineering&rft.au=Lovas,%20Havard%20Snefjella&rft.date=2022-04-01&rft.volume=47&rft.issue=2&rft.spage=331&rft.epage=349&rft.pages=331-349&rft.issn=0364-9059&rft.eissn=1558-1691&rft.coden=IJOEDY&rft_id=info:doi/10.1109/JOE.2021.3108229&rft_dat=%3Cproquest_RIE%3E2649792973%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2649792973&rft_id=info:pmid/&rft_ieee_id=9607016&rfr_iscdi=true |