Toward an Adaptive Skip-Gram Model for Network Representation Learning

The random walk process on network data is a widely-used approach for network representation learning. However, we argue that the sampling of node sequences and the subsampling for the Skip-gram's contexts have two drawbacks. One is less possible to precisely find the most correlated context no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.37506-37514
Hauptverfasser: Hsieh, I-Chung, Li, Cheng-Te
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 37514
container_issue
container_start_page 37506
container_title IEEE access
container_volume 10
creator Hsieh, I-Chung
Li, Cheng-Te
description The random walk process on network data is a widely-used approach for network representation learning. However, we argue that the sampling of node sequences and the subsampling for the Skip-gram's contexts have two drawbacks. One is less possible to precisely find the most correlated context nodes for every central node with only uniform graph search. The other is not easily controlled due to the expensive cost of hyperparameter tuning. Such two drawbacks lead to higher training cost and lower accuracy due to abundant and irrelevant samples. To solve these problems, we compute the adaptive probability of random walk based on Personalized PageRank (PPR), and propose an Adaptive SKip-gram (ASK) model without using complicated sampling process and negative sampling. We utilize k -most important neighbors for positive samples selection, and attach their corresponding PPR probability into the objective function. Based on benchmark datasets with three citation networks and three social networks, we demonstrate the improvement of our ASK model for network representation learning in tasks of link prediction, node classification, and embedding visualization. The results achieve more effective performance and efficient learning time.
doi_str_mv 10.1109/ACCESS.2022.3164670
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2649790266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9749116</ieee_id><doaj_id>oai_doaj_org_article_ea71e7bda40740e49b02db459e409ee4</doaj_id><sourcerecordid>2649790266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-a0409b681cfb508b99dbe84ff7a7c343d3c04257c517d80a7148e5f58978d43c3</originalsourceid><addsrcrecordid>eNpNUE1Lw0AUDKJgqf0FvQQ8p-5mv48ltLVQFWw9L5vdl5J-ZOMmtfjvTY0U3-U9hpl5w0TRGKMJxkg9TbNstl5PUpSmE4I55QLdRIMUc5UQRvjtv_s-GjXNDnUjO4iJQTTf-LMJLjZVPHWmbssviNf7sk4WwRzjF-_gEBc-xK_Qnn3Yx-9QB2igak1b-ipegQlVWW0forvCHBoY_e1h9DGfbbLnZPW2WGbTVWIpkm1iEEUq5xLbImdI5kq5HCQtCmGEJZQ4YhFNmbAMCyeREZhKYAWTSkhHiSXDaNn7Om92ug7l0YRv7U2pfwEfttqEtrQH0NCpQeTOUCQoAqpylLqcMgVdBgDaeT32XnXwnydoWr3zp1B18XXKqRIKpZx3LNKzbPBNE6C4fsVIX_rXff_60r_-679TjXtVCQBXhRJUYczJD7y7f7c</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649790266</pqid></control><display><type>article</type><title>Toward an Adaptive Skip-Gram Model for Network Representation Learning</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hsieh, I-Chung ; Li, Cheng-Te</creator><creatorcontrib>Hsieh, I-Chung ; Li, Cheng-Te</creatorcontrib><description>The random walk process on network data is a widely-used approach for network representation learning. However, we argue that the sampling of node sequences and the subsampling for the Skip-gram's contexts have two drawbacks. One is less possible to precisely find the most correlated context nodes for every central node with only uniform graph search. The other is not easily controlled due to the expensive cost of hyperparameter tuning. Such two drawbacks lead to higher training cost and lower accuracy due to abundant and irrelevant samples. To solve these problems, we compute the adaptive probability of random walk based on Personalized PageRank (PPR), and propose an Adaptive SKip-gram (ASK) model without using complicated sampling process and negative sampling. We utilize &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;k &lt;/tex-math&gt;&lt;/inline-formula&gt;-most important neighbors for positive samples selection, and attach their corresponding PPR probability into the objective function. Based on benchmark datasets with three citation networks and three social networks, we demonstrate the improvement of our ASK model for network representation learning in tasks of link prediction, node classification, and embedding visualization. The results achieve more effective performance and efficient learning time.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3164670</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; context co-occurrence ; Context modeling ; Correlation ; Costs ; Learning ; link prediction ; Network analysis ; Network embedding ; node classification ; Nodes ; personalized pagerank ; Predictive models ; Random walk ; Representation learning ; Representations ; Sampling ; Social networks ; Task analysis ; visualization</subject><ispartof>IEEE access, 2022, Vol.10, p.37506-37514</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-a0409b681cfb508b99dbe84ff7a7c343d3c04257c517d80a7148e5f58978d43c3</citedby><cites>FETCH-LOGICAL-c408t-a0409b681cfb508b99dbe84ff7a7c343d3c04257c517d80a7148e5f58978d43c3</cites><orcidid>0000-0001-7995-4787</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9749116$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Hsieh, I-Chung</creatorcontrib><creatorcontrib>Li, Cheng-Te</creatorcontrib><title>Toward an Adaptive Skip-Gram Model for Network Representation Learning</title><title>IEEE access</title><addtitle>Access</addtitle><description>The random walk process on network data is a widely-used approach for network representation learning. However, we argue that the sampling of node sequences and the subsampling for the Skip-gram's contexts have two drawbacks. One is less possible to precisely find the most correlated context nodes for every central node with only uniform graph search. The other is not easily controlled due to the expensive cost of hyperparameter tuning. Such two drawbacks lead to higher training cost and lower accuracy due to abundant and irrelevant samples. To solve these problems, we compute the adaptive probability of random walk based on Personalized PageRank (PPR), and propose an Adaptive SKip-gram (ASK) model without using complicated sampling process and negative sampling. We utilize &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;k &lt;/tex-math&gt;&lt;/inline-formula&gt;-most important neighbors for positive samples selection, and attach their corresponding PPR probability into the objective function. Based on benchmark datasets with three citation networks and three social networks, we demonstrate the improvement of our ASK model for network representation learning in tasks of link prediction, node classification, and embedding visualization. The results achieve more effective performance and efficient learning time.</description><subject>Adaptation models</subject><subject>context co-occurrence</subject><subject>Context modeling</subject><subject>Correlation</subject><subject>Costs</subject><subject>Learning</subject><subject>link prediction</subject><subject>Network analysis</subject><subject>Network embedding</subject><subject>node classification</subject><subject>Nodes</subject><subject>personalized pagerank</subject><subject>Predictive models</subject><subject>Random walk</subject><subject>Representation learning</subject><subject>Representations</subject><subject>Sampling</subject><subject>Social networks</subject><subject>Task analysis</subject><subject>visualization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1Lw0AUDKJgqf0FvQQ8p-5mv48ltLVQFWw9L5vdl5J-ZOMmtfjvTY0U3-U9hpl5w0TRGKMJxkg9TbNstl5PUpSmE4I55QLdRIMUc5UQRvjtv_s-GjXNDnUjO4iJQTTf-LMJLjZVPHWmbssviNf7sk4WwRzjF-_gEBc-xK_Qnn3Yx-9QB2igak1b-ipegQlVWW0forvCHBoY_e1h9DGfbbLnZPW2WGbTVWIpkm1iEEUq5xLbImdI5kq5HCQtCmGEJZQ4YhFNmbAMCyeREZhKYAWTSkhHiSXDaNn7Om92ug7l0YRv7U2pfwEfttqEtrQH0NCpQeTOUCQoAqpylLqcMgVdBgDaeT32XnXwnydoWr3zp1B18XXKqRIKpZx3LNKzbPBNE6C4fsVIX_rXff_60r_-679TjXtVCQBXhRJUYczJD7y7f7c</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Hsieh, I-Chung</creator><creator>Li, Cheng-Te</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7995-4787</orcidid></search><sort><creationdate>2022</creationdate><title>Toward an Adaptive Skip-Gram Model for Network Representation Learning</title><author>Hsieh, I-Chung ; Li, Cheng-Te</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-a0409b681cfb508b99dbe84ff7a7c343d3c04257c517d80a7148e5f58978d43c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation models</topic><topic>context co-occurrence</topic><topic>Context modeling</topic><topic>Correlation</topic><topic>Costs</topic><topic>Learning</topic><topic>link prediction</topic><topic>Network analysis</topic><topic>Network embedding</topic><topic>node classification</topic><topic>Nodes</topic><topic>personalized pagerank</topic><topic>Predictive models</topic><topic>Random walk</topic><topic>Representation learning</topic><topic>Representations</topic><topic>Sampling</topic><topic>Social networks</topic><topic>Task analysis</topic><topic>visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsieh, I-Chung</creatorcontrib><creatorcontrib>Li, Cheng-Te</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsieh, I-Chung</au><au>Li, Cheng-Te</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward an Adaptive Skip-Gram Model for Network Representation Learning</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>37506</spage><epage>37514</epage><pages>37506-37514</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The random walk process on network data is a widely-used approach for network representation learning. However, we argue that the sampling of node sequences and the subsampling for the Skip-gram's contexts have two drawbacks. One is less possible to precisely find the most correlated context nodes for every central node with only uniform graph search. The other is not easily controlled due to the expensive cost of hyperparameter tuning. Such two drawbacks lead to higher training cost and lower accuracy due to abundant and irrelevant samples. To solve these problems, we compute the adaptive probability of random walk based on Personalized PageRank (PPR), and propose an Adaptive SKip-gram (ASK) model without using complicated sampling process and negative sampling. We utilize &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;k &lt;/tex-math&gt;&lt;/inline-formula&gt;-most important neighbors for positive samples selection, and attach their corresponding PPR probability into the objective function. Based on benchmark datasets with three citation networks and three social networks, we demonstrate the improvement of our ASK model for network representation learning in tasks of link prediction, node classification, and embedding visualization. The results achieve more effective performance and efficient learning time.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3164670</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7995-4787</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.37506-37514
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2649790266
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Adaptation models
context co-occurrence
Context modeling
Correlation
Costs
Learning
link prediction
Network analysis
Network embedding
node classification
Nodes
personalized pagerank
Predictive models
Random walk
Representation learning
Representations
Sampling
Social networks
Task analysis
visualization
title Toward an Adaptive Skip-Gram Model for Network Representation Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A34%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20an%20Adaptive%20Skip-Gram%20Model%20for%20Network%20Representation%20Learning&rft.jtitle=IEEE%20access&rft.au=Hsieh,%20I-Chung&rft.date=2022&rft.volume=10&rft.spage=37506&rft.epage=37514&rft.pages=37506-37514&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3164670&rft_dat=%3Cproquest_doaj_%3E2649790266%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2649790266&rft_id=info:pmid/&rft_ieee_id=9749116&rft_doaj_id=oai_doaj_org_article_ea71e7bda40740e49b02db459e409ee4&rfr_iscdi=true