Toward an Adaptive Skip-Gram Model for Network Representation Learning
The random walk process on network data is a widely-used approach for network representation learning. However, we argue that the sampling of node sequences and the subsampling for the Skip-gram's contexts have two drawbacks. One is less possible to precisely find the most correlated context no...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.37506-37514 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 37514 |
---|---|
container_issue | |
container_start_page | 37506 |
container_title | IEEE access |
container_volume | 10 |
creator | Hsieh, I-Chung Li, Cheng-Te |
description | The random walk process on network data is a widely-used approach for network representation learning. However, we argue that the sampling of node sequences and the subsampling for the Skip-gram's contexts have two drawbacks. One is less possible to precisely find the most correlated context nodes for every central node with only uniform graph search. The other is not easily controlled due to the expensive cost of hyperparameter tuning. Such two drawbacks lead to higher training cost and lower accuracy due to abundant and irrelevant samples. To solve these problems, we compute the adaptive probability of random walk based on Personalized PageRank (PPR), and propose an Adaptive SKip-gram (ASK) model without using complicated sampling process and negative sampling. We utilize k -most important neighbors for positive samples selection, and attach their corresponding PPR probability into the objective function. Based on benchmark datasets with three citation networks and three social networks, we demonstrate the improvement of our ASK model for network representation learning in tasks of link prediction, node classification, and embedding visualization. The results achieve more effective performance and efficient learning time. |
doi_str_mv | 10.1109/ACCESS.2022.3164670 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2649790266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9749116</ieee_id><doaj_id>oai_doaj_org_article_ea71e7bda40740e49b02db459e409ee4</doaj_id><sourcerecordid>2649790266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-a0409b681cfb508b99dbe84ff7a7c343d3c04257c517d80a7148e5f58978d43c3</originalsourceid><addsrcrecordid>eNpNUE1Lw0AUDKJgqf0FvQQ8p-5mv48ltLVQFWw9L5vdl5J-ZOMmtfjvTY0U3-U9hpl5w0TRGKMJxkg9TbNstl5PUpSmE4I55QLdRIMUc5UQRvjtv_s-GjXNDnUjO4iJQTTf-LMJLjZVPHWmbssviNf7sk4WwRzjF-_gEBc-xK_Qnn3Yx-9QB2igak1b-ipegQlVWW0forvCHBoY_e1h9DGfbbLnZPW2WGbTVWIpkm1iEEUq5xLbImdI5kq5HCQtCmGEJZQ4YhFNmbAMCyeREZhKYAWTSkhHiSXDaNn7Om92ug7l0YRv7U2pfwEfttqEtrQH0NCpQeTOUCQoAqpylLqcMgVdBgDaeT32XnXwnydoWr3zp1B18XXKqRIKpZx3LNKzbPBNE6C4fsVIX_rXff_60r_-679TjXtVCQBXhRJUYczJD7y7f7c</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649790266</pqid></control><display><type>article</type><title>Toward an Adaptive Skip-Gram Model for Network Representation Learning</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hsieh, I-Chung ; Li, Cheng-Te</creator><creatorcontrib>Hsieh, I-Chung ; Li, Cheng-Te</creatorcontrib><description>The random walk process on network data is a widely-used approach for network representation learning. However, we argue that the sampling of node sequences and the subsampling for the Skip-gram's contexts have two drawbacks. One is less possible to precisely find the most correlated context nodes for every central node with only uniform graph search. The other is not easily controlled due to the expensive cost of hyperparameter tuning. Such two drawbacks lead to higher training cost and lower accuracy due to abundant and irrelevant samples. To solve these problems, we compute the adaptive probability of random walk based on Personalized PageRank (PPR), and propose an Adaptive SKip-gram (ASK) model without using complicated sampling process and negative sampling. We utilize <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-most important neighbors for positive samples selection, and attach their corresponding PPR probability into the objective function. Based on benchmark datasets with three citation networks and three social networks, we demonstrate the improvement of our ASK model for network representation learning in tasks of link prediction, node classification, and embedding visualization. The results achieve more effective performance and efficient learning time.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3164670</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; context co-occurrence ; Context modeling ; Correlation ; Costs ; Learning ; link prediction ; Network analysis ; Network embedding ; node classification ; Nodes ; personalized pagerank ; Predictive models ; Random walk ; Representation learning ; Representations ; Sampling ; Social networks ; Task analysis ; visualization</subject><ispartof>IEEE access, 2022, Vol.10, p.37506-37514</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-a0409b681cfb508b99dbe84ff7a7c343d3c04257c517d80a7148e5f58978d43c3</citedby><cites>FETCH-LOGICAL-c408t-a0409b681cfb508b99dbe84ff7a7c343d3c04257c517d80a7148e5f58978d43c3</cites><orcidid>0000-0001-7995-4787</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9749116$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Hsieh, I-Chung</creatorcontrib><creatorcontrib>Li, Cheng-Te</creatorcontrib><title>Toward an Adaptive Skip-Gram Model for Network Representation Learning</title><title>IEEE access</title><addtitle>Access</addtitle><description>The random walk process on network data is a widely-used approach for network representation learning. However, we argue that the sampling of node sequences and the subsampling for the Skip-gram's contexts have two drawbacks. One is less possible to precisely find the most correlated context nodes for every central node with only uniform graph search. The other is not easily controlled due to the expensive cost of hyperparameter tuning. Such two drawbacks lead to higher training cost and lower accuracy due to abundant and irrelevant samples. To solve these problems, we compute the adaptive probability of random walk based on Personalized PageRank (PPR), and propose an Adaptive SKip-gram (ASK) model without using complicated sampling process and negative sampling. We utilize <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-most important neighbors for positive samples selection, and attach their corresponding PPR probability into the objective function. Based on benchmark datasets with three citation networks and three social networks, we demonstrate the improvement of our ASK model for network representation learning in tasks of link prediction, node classification, and embedding visualization. The results achieve more effective performance and efficient learning time.</description><subject>Adaptation models</subject><subject>context co-occurrence</subject><subject>Context modeling</subject><subject>Correlation</subject><subject>Costs</subject><subject>Learning</subject><subject>link prediction</subject><subject>Network analysis</subject><subject>Network embedding</subject><subject>node classification</subject><subject>Nodes</subject><subject>personalized pagerank</subject><subject>Predictive models</subject><subject>Random walk</subject><subject>Representation learning</subject><subject>Representations</subject><subject>Sampling</subject><subject>Social networks</subject><subject>Task analysis</subject><subject>visualization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1Lw0AUDKJgqf0FvQQ8p-5mv48ltLVQFWw9L5vdl5J-ZOMmtfjvTY0U3-U9hpl5w0TRGKMJxkg9TbNstl5PUpSmE4I55QLdRIMUc5UQRvjtv_s-GjXNDnUjO4iJQTTf-LMJLjZVPHWmbssviNf7sk4WwRzjF-_gEBc-xK_Qnn3Yx-9QB2igak1b-ipegQlVWW0forvCHBoY_e1h9DGfbbLnZPW2WGbTVWIpkm1iEEUq5xLbImdI5kq5HCQtCmGEJZQ4YhFNmbAMCyeREZhKYAWTSkhHiSXDaNn7Om92ug7l0YRv7U2pfwEfttqEtrQH0NCpQeTOUCQoAqpylLqcMgVdBgDaeT32XnXwnydoWr3zp1B18XXKqRIKpZx3LNKzbPBNE6C4fsVIX_rXff_60r_-679TjXtVCQBXhRJUYczJD7y7f7c</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Hsieh, I-Chung</creator><creator>Li, Cheng-Te</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7995-4787</orcidid></search><sort><creationdate>2022</creationdate><title>Toward an Adaptive Skip-Gram Model for Network Representation Learning</title><author>Hsieh, I-Chung ; Li, Cheng-Te</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-a0409b681cfb508b99dbe84ff7a7c343d3c04257c517d80a7148e5f58978d43c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation models</topic><topic>context co-occurrence</topic><topic>Context modeling</topic><topic>Correlation</topic><topic>Costs</topic><topic>Learning</topic><topic>link prediction</topic><topic>Network analysis</topic><topic>Network embedding</topic><topic>node classification</topic><topic>Nodes</topic><topic>personalized pagerank</topic><topic>Predictive models</topic><topic>Random walk</topic><topic>Representation learning</topic><topic>Representations</topic><topic>Sampling</topic><topic>Social networks</topic><topic>Task analysis</topic><topic>visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsieh, I-Chung</creatorcontrib><creatorcontrib>Li, Cheng-Te</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsieh, I-Chung</au><au>Li, Cheng-Te</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward an Adaptive Skip-Gram Model for Network Representation Learning</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>37506</spage><epage>37514</epage><pages>37506-37514</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The random walk process on network data is a widely-used approach for network representation learning. However, we argue that the sampling of node sequences and the subsampling for the Skip-gram's contexts have two drawbacks. One is less possible to precisely find the most correlated context nodes for every central node with only uniform graph search. The other is not easily controlled due to the expensive cost of hyperparameter tuning. Such two drawbacks lead to higher training cost and lower accuracy due to abundant and irrelevant samples. To solve these problems, we compute the adaptive probability of random walk based on Personalized PageRank (PPR), and propose an Adaptive SKip-gram (ASK) model without using complicated sampling process and negative sampling. We utilize <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-most important neighbors for positive samples selection, and attach their corresponding PPR probability into the objective function. Based on benchmark datasets with three citation networks and three social networks, we demonstrate the improvement of our ASK model for network representation learning in tasks of link prediction, node classification, and embedding visualization. The results achieve more effective performance and efficient learning time.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3164670</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7995-4787</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.37506-37514 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2649790266 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Adaptation models context co-occurrence Context modeling Correlation Costs Learning link prediction Network analysis Network embedding node classification Nodes personalized pagerank Predictive models Random walk Representation learning Representations Sampling Social networks Task analysis visualization |
title | Toward an Adaptive Skip-Gram Model for Network Representation Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A34%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20an%20Adaptive%20Skip-Gram%20Model%20for%20Network%20Representation%20Learning&rft.jtitle=IEEE%20access&rft.au=Hsieh,%20I-Chung&rft.date=2022&rft.volume=10&rft.spage=37506&rft.epage=37514&rft.pages=37506-37514&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3164670&rft_dat=%3Cproquest_doaj_%3E2649790266%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2649790266&rft_id=info:pmid/&rft_ieee_id=9749116&rft_doaj_id=oai_doaj_org_article_ea71e7bda40740e49b02db459e409ee4&rfr_iscdi=true |