Sum-of-Norms Periodic Model Predictive Control for Space Rendezvous
Model predictive control (MPC) is receiving increasing attention in space applications, as a key technology for enhancing autonomy of the flight control system. Sum-of-norms formulations are specifically suited to this context, because they allow to optimize meaningful performance figures and to pro...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on control systems technology 2022-05, Vol.30 (3), p.1311-1318 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Model predictive control (MPC) is receiving increasing attention in space applications, as a key technology for enhancing autonomy of the flight control system. Sum-of-norms formulations are specifically suited to this context, because they allow to optimize meaningful performance figures and to promote control sparsity. This brief presents a sum-of-norms MPC scheme for linear periodically time-varying systems. Closed-loop stability is proven by suitably defining periodic sequences of terminal weights and terminal sets. The proposed solution is applied to a rendezvous case study involving periodic dynamics due to geopotential effects and solar eclipses. |
---|---|
ISSN: | 1063-6536 1558-0865 |
DOI: | 10.1109/TCST.2021.3095390 |