Mechanical properties, thermal stability and microstructure evolution of carbon fiber-reinforced epoxy composites exposed to high-dose γ-rays

Carbon fiber-reinforced composites with superior strength-to-weight and stiffness-to-weight ratio were highly resistant to ionizing radiation, which make them popular in nuclear reactor. There were large doses of γ-radiation in nuclear reactor, which caused damage in composites. In order to investig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiation physics and chemistry (Oxford, England : 1993) England : 1993), 2022-05, Vol.194, p.110056, Article 110056
Hauptverfasser: Liu, Liangsen, Feng, Lian, Ma, Tianshuai, Xu, Zhiwei, Pei, Xiaoyuan, Liu, Yi, Shi, Haiting, Tang, Youhong, Liu, Liyan, Deng, Hui, Wang, Chunhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 110056
container_title Radiation physics and chemistry (Oxford, England : 1993)
container_volume 194
creator Liu, Liangsen
Feng, Lian
Ma, Tianshuai
Xu, Zhiwei
Pei, Xiaoyuan
Liu, Yi
Shi, Haiting
Tang, Youhong
Liu, Liyan
Deng, Hui
Wang, Chunhong
description Carbon fiber-reinforced composites with superior strength-to-weight and stiffness-to-weight ratio were highly resistant to ionizing radiation, which make them popular in nuclear reactor. There were large doses of γ-radiation in nuclear reactor, which caused damage in composites. In order to investigate effect of high γ-ray absorbed dose on carbon fiber (CF)/epoxy (EP) composite, the doses of 2 MGy, 7 MGy, and 20 MGy were applied in irradiating the samples, and the mechanical properties, thermal stability and microstructural changes of composites were analyzed. The results showed that under the absorbed dose of 2 MGy, the storage modulus, flexural strength and thermal stability of CF/EP composites increased. However, those properties decreased while the dose increased to 7 MGy and further decreased while the dose rise to 20 MGy. The evolution mechanism was understood by analyzing free radical and composition change of CF/EP after irradiation via electron spin resonance and X-ray photoelectron spectroscopy. Irradiation results in bond-breaking such as C–C bond and C–H bond, and also new bond-forming like C–O and CO, which forms competition effects among radiation-induced degradation and cross-linking reaction. •Effect of high-dose irradiation on CF/EP composite was investigated.•Evolution mechanism was understood by EPR, XPS and ultrasonic C-scan.•Irradiation caused scission and cross-linking of resin molecular chains simultaneously.
doi_str_mv 10.1016/j.radphyschem.2022.110056
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2649760072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0969806X22000986</els_id><sourcerecordid>2649760072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-947943f81f3652841baf5805ba41b1f1919ad1d9cb9d3a8d4aee73171b1c7ecf3</originalsourceid><addsrcrecordid>eNqNkEtu2zAQhomgAeK6uQODbiuX1JvLwkiTAi66SYDsCIocRjQsUR1SRnSJXib3yJlKw1l02dX888b_EXLD2YYzXn_db1CZqV-C7mHY5CzPN5wzVtUXZMXbRmSsFdUHsmKiFlnL6qcr8jGEPWOsaatiRf78BN2r0Wl1oBP6CTA6CF9o7AGHVAtRde7g4kLVaOjgNPoQcdZxRqBw9Ic5Oj9Sb6lW2CVlXQeYIbjRetRgKEz-ZaHaD5MPLkKg8JJUakRPe_fcZyZl9O01Q7WET-TSqkOA6_e4Jo_fbx-299nu192P7bddpotSxEyUjSgL23Jb1FXelrxTtmpZ1akkueWCC2W4EboTplCtKRVAU_AmNXUD2hZr8vl8N3n-PUOIcu9nHNNLmdelaOrEJ09T4jx1ch0QrJzQDQoXyZk84Zd7-Q9-ecIvz_jT7va8C8nG0QHKoB2MiYhD0FEa7_7jyl9ur5lb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649760072</pqid></control><display><type>article</type><title>Mechanical properties, thermal stability and microstructure evolution of carbon fiber-reinforced epoxy composites exposed to high-dose γ-rays</title><source>Elsevier ScienceDirect Journals</source><creator>Liu, Liangsen ; Feng, Lian ; Ma, Tianshuai ; Xu, Zhiwei ; Pei, Xiaoyuan ; Liu, Yi ; Shi, Haiting ; Tang, Youhong ; Liu, Liyan ; Deng, Hui ; Wang, Chunhong</creator><creatorcontrib>Liu, Liangsen ; Feng, Lian ; Ma, Tianshuai ; Xu, Zhiwei ; Pei, Xiaoyuan ; Liu, Yi ; Shi, Haiting ; Tang, Youhong ; Liu, Liyan ; Deng, Hui ; Wang, Chunhong</creatorcontrib><description>Carbon fiber-reinforced composites with superior strength-to-weight and stiffness-to-weight ratio were highly resistant to ionizing radiation, which make them popular in nuclear reactor. There were large doses of γ-radiation in nuclear reactor, which caused damage in composites. In order to investigate effect of high γ-ray absorbed dose on carbon fiber (CF)/epoxy (EP) composite, the doses of 2 MGy, 7 MGy, and 20 MGy were applied in irradiating the samples, and the mechanical properties, thermal stability and microstructural changes of composites were analyzed. The results showed that under the absorbed dose of 2 MGy, the storage modulus, flexural strength and thermal stability of CF/EP composites increased. However, those properties decreased while the dose increased to 7 MGy and further decreased while the dose rise to 20 MGy. The evolution mechanism was understood by analyzing free radical and composition change of CF/EP after irradiation via electron spin resonance and X-ray photoelectron spectroscopy. Irradiation results in bond-breaking such as C–C bond and C–H bond, and also new bond-forming like C–O and CO, which forms competition effects among radiation-induced degradation and cross-linking reaction. •Effect of high-dose irradiation on CF/EP composite was investigated.•Evolution mechanism was understood by EPR, XPS and ultrasonic C-scan.•Irradiation caused scission and cross-linking of resin molecular chains simultaneously.</description><identifier>ISSN: 0969-806X</identifier><identifier>EISSN: 1879-0895</identifier><identifier>DOI: 10.1016/j.radphyschem.2022.110056</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Carbon fiber reinforced plastics ; Carbon fiber reinforcement ; Carbon-epoxy composites ; CF/EP composite ; Covalent bonds ; Crosslinking ; Electron paramagnetic resonance ; Electron spin ; Evolution ; Fiber composites ; Fiber reinforced polymers ; Flexural strength ; Free radicals ; Gamma rays ; Hydrogen bonds ; Ionizing radiation ; Mechanical properties ; Microstructure ; Microstructure evolution ; Nuclear reactors ; Photoelectrons ; Radiation ; Radiation damage ; Radiation effects ; Radiation tolerance ; Spin resonance ; Stability ; Stiffness ; Thermal stability ; γ-ray irradiation</subject><ispartof>Radiation physics and chemistry (Oxford, England : 1993), 2022-05, Vol.194, p.110056, Article 110056</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-947943f81f3652841baf5805ba41b1f1919ad1d9cb9d3a8d4aee73171b1c7ecf3</citedby><cites>FETCH-LOGICAL-c349t-947943f81f3652841baf5805ba41b1f1919ad1d9cb9d3a8d4aee73171b1c7ecf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0969806X22000986$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Liu, Liangsen</creatorcontrib><creatorcontrib>Feng, Lian</creatorcontrib><creatorcontrib>Ma, Tianshuai</creatorcontrib><creatorcontrib>Xu, Zhiwei</creatorcontrib><creatorcontrib>Pei, Xiaoyuan</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Shi, Haiting</creatorcontrib><creatorcontrib>Tang, Youhong</creatorcontrib><creatorcontrib>Liu, Liyan</creatorcontrib><creatorcontrib>Deng, Hui</creatorcontrib><creatorcontrib>Wang, Chunhong</creatorcontrib><title>Mechanical properties, thermal stability and microstructure evolution of carbon fiber-reinforced epoxy composites exposed to high-dose γ-rays</title><title>Radiation physics and chemistry (Oxford, England : 1993)</title><description>Carbon fiber-reinforced composites with superior strength-to-weight and stiffness-to-weight ratio were highly resistant to ionizing radiation, which make them popular in nuclear reactor. There were large doses of γ-radiation in nuclear reactor, which caused damage in composites. In order to investigate effect of high γ-ray absorbed dose on carbon fiber (CF)/epoxy (EP) composite, the doses of 2 MGy, 7 MGy, and 20 MGy were applied in irradiating the samples, and the mechanical properties, thermal stability and microstructural changes of composites were analyzed. The results showed that under the absorbed dose of 2 MGy, the storage modulus, flexural strength and thermal stability of CF/EP composites increased. However, those properties decreased while the dose increased to 7 MGy and further decreased while the dose rise to 20 MGy. The evolution mechanism was understood by analyzing free radical and composition change of CF/EP after irradiation via electron spin resonance and X-ray photoelectron spectroscopy. Irradiation results in bond-breaking such as C–C bond and C–H bond, and also new bond-forming like C–O and CO, which forms competition effects among radiation-induced degradation and cross-linking reaction. •Effect of high-dose irradiation on CF/EP composite was investigated.•Evolution mechanism was understood by EPR, XPS and ultrasonic C-scan.•Irradiation caused scission and cross-linking of resin molecular chains simultaneously.</description><subject>Carbon fiber reinforced plastics</subject><subject>Carbon fiber reinforcement</subject><subject>Carbon-epoxy composites</subject><subject>CF/EP composite</subject><subject>Covalent bonds</subject><subject>Crosslinking</subject><subject>Electron paramagnetic resonance</subject><subject>Electron spin</subject><subject>Evolution</subject><subject>Fiber composites</subject><subject>Fiber reinforced polymers</subject><subject>Flexural strength</subject><subject>Free radicals</subject><subject>Gamma rays</subject><subject>Hydrogen bonds</subject><subject>Ionizing radiation</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Microstructure evolution</subject><subject>Nuclear reactors</subject><subject>Photoelectrons</subject><subject>Radiation</subject><subject>Radiation damage</subject><subject>Radiation effects</subject><subject>Radiation tolerance</subject><subject>Spin resonance</subject><subject>Stability</subject><subject>Stiffness</subject><subject>Thermal stability</subject><subject>γ-ray irradiation</subject><issn>0969-806X</issn><issn>1879-0895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkEtu2zAQhomgAeK6uQODbiuX1JvLwkiTAi66SYDsCIocRjQsUR1SRnSJXib3yJlKw1l02dX888b_EXLD2YYzXn_db1CZqV-C7mHY5CzPN5wzVtUXZMXbRmSsFdUHsmKiFlnL6qcr8jGEPWOsaatiRf78BN2r0Wl1oBP6CTA6CF9o7AGHVAtRde7g4kLVaOjgNPoQcdZxRqBw9Ic5Oj9Sb6lW2CVlXQeYIbjRetRgKEz-ZaHaD5MPLkKg8JJUakRPe_fcZyZl9O01Q7WET-TSqkOA6_e4Jo_fbx-299nu192P7bddpotSxEyUjSgL23Jb1FXelrxTtmpZ1akkueWCC2W4EboTplCtKRVAU_AmNXUD2hZr8vl8N3n-PUOIcu9nHNNLmdelaOrEJ09T4jx1ch0QrJzQDQoXyZk84Zd7-Q9-ecIvz_jT7va8C8nG0QHKoB2MiYhD0FEa7_7jyl9ur5lb</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Liu, Liangsen</creator><creator>Feng, Lian</creator><creator>Ma, Tianshuai</creator><creator>Xu, Zhiwei</creator><creator>Pei, Xiaoyuan</creator><creator>Liu, Yi</creator><creator>Shi, Haiting</creator><creator>Tang, Youhong</creator><creator>Liu, Liyan</creator><creator>Deng, Hui</creator><creator>Wang, Chunhong</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>202205</creationdate><title>Mechanical properties, thermal stability and microstructure evolution of carbon fiber-reinforced epoxy composites exposed to high-dose γ-rays</title><author>Liu, Liangsen ; Feng, Lian ; Ma, Tianshuai ; Xu, Zhiwei ; Pei, Xiaoyuan ; Liu, Yi ; Shi, Haiting ; Tang, Youhong ; Liu, Liyan ; Deng, Hui ; Wang, Chunhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-947943f81f3652841baf5805ba41b1f1919ad1d9cb9d3a8d4aee73171b1c7ecf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carbon fiber reinforced plastics</topic><topic>Carbon fiber reinforcement</topic><topic>Carbon-epoxy composites</topic><topic>CF/EP composite</topic><topic>Covalent bonds</topic><topic>Crosslinking</topic><topic>Electron paramagnetic resonance</topic><topic>Electron spin</topic><topic>Evolution</topic><topic>Fiber composites</topic><topic>Fiber reinforced polymers</topic><topic>Flexural strength</topic><topic>Free radicals</topic><topic>Gamma rays</topic><topic>Hydrogen bonds</topic><topic>Ionizing radiation</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Microstructure evolution</topic><topic>Nuclear reactors</topic><topic>Photoelectrons</topic><topic>Radiation</topic><topic>Radiation damage</topic><topic>Radiation effects</topic><topic>Radiation tolerance</topic><topic>Spin resonance</topic><topic>Stability</topic><topic>Stiffness</topic><topic>Thermal stability</topic><topic>γ-ray irradiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Liangsen</creatorcontrib><creatorcontrib>Feng, Lian</creatorcontrib><creatorcontrib>Ma, Tianshuai</creatorcontrib><creatorcontrib>Xu, Zhiwei</creatorcontrib><creatorcontrib>Pei, Xiaoyuan</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Shi, Haiting</creatorcontrib><creatorcontrib>Tang, Youhong</creatorcontrib><creatorcontrib>Liu, Liyan</creatorcontrib><creatorcontrib>Deng, Hui</creatorcontrib><creatorcontrib>Wang, Chunhong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Radiation physics and chemistry (Oxford, England : 1993)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Liangsen</au><au>Feng, Lian</au><au>Ma, Tianshuai</au><au>Xu, Zhiwei</au><au>Pei, Xiaoyuan</au><au>Liu, Yi</au><au>Shi, Haiting</au><au>Tang, Youhong</au><au>Liu, Liyan</au><au>Deng, Hui</au><au>Wang, Chunhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical properties, thermal stability and microstructure evolution of carbon fiber-reinforced epoxy composites exposed to high-dose γ-rays</atitle><jtitle>Radiation physics and chemistry (Oxford, England : 1993)</jtitle><date>2022-05</date><risdate>2022</risdate><volume>194</volume><spage>110056</spage><pages>110056-</pages><artnum>110056</artnum><issn>0969-806X</issn><eissn>1879-0895</eissn><abstract>Carbon fiber-reinforced composites with superior strength-to-weight and stiffness-to-weight ratio were highly resistant to ionizing radiation, which make them popular in nuclear reactor. There were large doses of γ-radiation in nuclear reactor, which caused damage in composites. In order to investigate effect of high γ-ray absorbed dose on carbon fiber (CF)/epoxy (EP) composite, the doses of 2 MGy, 7 MGy, and 20 MGy were applied in irradiating the samples, and the mechanical properties, thermal stability and microstructural changes of composites were analyzed. The results showed that under the absorbed dose of 2 MGy, the storage modulus, flexural strength and thermal stability of CF/EP composites increased. However, those properties decreased while the dose increased to 7 MGy and further decreased while the dose rise to 20 MGy. The evolution mechanism was understood by analyzing free radical and composition change of CF/EP after irradiation via electron spin resonance and X-ray photoelectron spectroscopy. Irradiation results in bond-breaking such as C–C bond and C–H bond, and also new bond-forming like C–O and CO, which forms competition effects among radiation-induced degradation and cross-linking reaction. •Effect of high-dose irradiation on CF/EP composite was investigated.•Evolution mechanism was understood by EPR, XPS and ultrasonic C-scan.•Irradiation caused scission and cross-linking of resin molecular chains simultaneously.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.radphyschem.2022.110056</doi></addata></record>
fulltext fulltext
identifier ISSN: 0969-806X
ispartof Radiation physics and chemistry (Oxford, England : 1993), 2022-05, Vol.194, p.110056, Article 110056
issn 0969-806X
1879-0895
language eng
recordid cdi_proquest_journals_2649760072
source Elsevier ScienceDirect Journals
subjects Carbon fiber reinforced plastics
Carbon fiber reinforcement
Carbon-epoxy composites
CF/EP composite
Covalent bonds
Crosslinking
Electron paramagnetic resonance
Electron spin
Evolution
Fiber composites
Fiber reinforced polymers
Flexural strength
Free radicals
Gamma rays
Hydrogen bonds
Ionizing radiation
Mechanical properties
Microstructure
Microstructure evolution
Nuclear reactors
Photoelectrons
Radiation
Radiation damage
Radiation effects
Radiation tolerance
Spin resonance
Stability
Stiffness
Thermal stability
γ-ray irradiation
title Mechanical properties, thermal stability and microstructure evolution of carbon fiber-reinforced epoxy composites exposed to high-dose γ-rays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A15%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20properties,%20thermal%20stability%20and%20microstructure%20evolution%20of%20carbon%20fiber-reinforced%20epoxy%20composites%20exposed%20to%20high-dose%20%CE%B3-rays&rft.jtitle=Radiation%20physics%20and%20chemistry%20(Oxford,%20England%20:%201993)&rft.au=Liu,%20Liangsen&rft.date=2022-05&rft.volume=194&rft.spage=110056&rft.pages=110056-&rft.artnum=110056&rft.issn=0969-806X&rft.eissn=1879-0895&rft_id=info:doi/10.1016/j.radphyschem.2022.110056&rft_dat=%3Cproquest_cross%3E2649760072%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2649760072&rft_id=info:pmid/&rft_els_id=S0969806X22000986&rfr_iscdi=true