Dehydration rate of the glycine‐MgSO4·5H2O complex and the stability of glycine expelled from the complex by in situ Raman spectroscopy under Mars‐relevant conditions
In this work, we studied the dehydration process of the glycine‐MgSO4·5H2O complex under Mars‐relevant conditions (99% CO2 and 0.6% H2O under ultra violet (UV) irradiation exposure at 7‐mbar pressure and high vacuum conditions: 8 × 10−5 and 5 × 10−5 mbar) by in situ Raman spectroscopy inside a plane...
Gespeichert in:
Veröffentlicht in: | Journal of Raman spectroscopy 2022-04, Vol.53 (4), p.724-734 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 734 |
---|---|
container_issue | 4 |
container_start_page | 724 |
container_title | Journal of Raman spectroscopy |
container_volume | 53 |
creator | Bonales, Laura J. Rodríguez‐Villagra, Nieves Fernandez‐Sampedro, Maite Mateo‐Martí, Eva |
description | In this work, we studied the dehydration process of the glycine‐MgSO4·5H2O complex under Mars‐relevant conditions (99% CO2 and 0.6% H2O under ultra violet (UV) irradiation exposure at 7‐mbar pressure and high vacuum conditions: 8 × 10−5 and 5 × 10−5 mbar) by in situ Raman spectroscopy inside a planetary atmosphere and surface chamber (PASC). This work provides quality Raman spectra taken under simulated planetary conditions (to be integrated in a database), as Raman spectroscopy forms part of the current and upcoming NASA and ESA Mars planetary missions. The results demonstrate that Raman spectroscopy can be used to calculate rates of dehydration of the glycine‐MgSO4·5H2O compound to study the chemical stability with respect to photodecomposition (1) of metal‐bound glycine molecules forming the complex and (2) glycine expelled from the complex, both under Mars‐simulated conditions; finally, Raman spectroscopy can also be used to quantify intermolecular interactions in terms of local pressures. Importantly, advanced detection of water molecules as part of a complex with astrobiological interest under planetary conditions plays a crucial role in planetary missions.
The evolution of Gly·MgSO4·5H2O, a molecule with planetological interest, is studied at Mars‐relevant conditions during its dehydration and UV irradiation by the in situ Raman spectroscopic. This work provides Raman spectra taken under simulated planetary conditions as Raman spectroscopy forms part in the current and upcoming NASA and ESA Mars planetary missions. |
doi_str_mv | 10.1002/jrs.6301 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2649741405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2649741405</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1361-10316e747670e98af04104fd7a1d12566d210d3ac3165fb9a5d08ddedf6e88633</originalsourceid><addsrcrecordid>eNo1kUtOwzAQhi0EEqUgcQRLrFPGieMkS1QeBbWq1MI6cuNJ6yov7BSaHUfgHhyAPUfhJCRtWf2z-L6ZkX5CLhkMGIB7vTZ2IDxgR6THIAoc7vv-MemBFwQO8FCckjNr1wAQRYL1yNctrhplZK3LgraBtExpvUK6zJpEF_j78TlZzqf859sfuVOalHmV4ZbKQu0oW8uFznTddNpBobitMMtQ0dSU-Q771xYN1QW1ut7QmcxlO1aY1Ka0SVk1dFMoNHQijW2vGszwTRZ16xZKd-_Zc3KSyszixSH75OX-7nk4csbTh8fhzdipmCeYw8BjAgMeiAAwCmUKnAFPVSCZYq4vhHIZKE8mLeani0j6CkKlUKUCw1B4Xp9c7fdWpnzdoK3jdbkxRXsydgWPAs44-C3l7Kl3nWETV0bn0jQxg7jrIW57iLse4qfZvEvvD5_OgiI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649741405</pqid></control><display><type>article</type><title>Dehydration rate of the glycine‐MgSO4·5H2O complex and the stability of glycine expelled from the complex by in situ Raman spectroscopy under Mars‐relevant conditions</title><source>Wiley Journals</source><creator>Bonales, Laura J. ; Rodríguez‐Villagra, Nieves ; Fernandez‐Sampedro, Maite ; Mateo‐Martí, Eva</creator><creatorcontrib>Bonales, Laura J. ; Rodríguez‐Villagra, Nieves ; Fernandez‐Sampedro, Maite ; Mateo‐Martí, Eva</creatorcontrib><description>In this work, we studied the dehydration process of the glycine‐MgSO4·5H2O complex under Mars‐relevant conditions (99% CO2 and 0.6% H2O under ultra violet (UV) irradiation exposure at 7‐mbar pressure and high vacuum conditions: 8 × 10−5 and 5 × 10−5 mbar) by in situ Raman spectroscopy inside a planetary atmosphere and surface chamber (PASC). This work provides quality Raman spectra taken under simulated planetary conditions (to be integrated in a database), as Raman spectroscopy forms part of the current and upcoming NASA and ESA Mars planetary missions. The results demonstrate that Raman spectroscopy can be used to calculate rates of dehydration of the glycine‐MgSO4·5H2O compound to study the chemical stability with respect to photodecomposition (1) of metal‐bound glycine molecules forming the complex and (2) glycine expelled from the complex, both under Mars‐simulated conditions; finally, Raman spectroscopy can also be used to quantify intermolecular interactions in terms of local pressures. Importantly, advanced detection of water molecules as part of a complex with astrobiological interest under planetary conditions plays a crucial role in planetary missions.
The evolution of Gly·MgSO4·5H2O, a molecule with planetological interest, is studied at Mars‐relevant conditions during its dehydration and UV irradiation by the in situ Raman spectroscopic. This work provides Raman spectra taken under simulated planetary conditions as Raman spectroscopy forms part in the current and upcoming NASA and ESA Mars planetary missions.</description><identifier>ISSN: 0377-0486</identifier><identifier>EISSN: 1097-4555</identifier><identifier>DOI: 10.1002/jrs.6301</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Astrobiology ; Carbon dioxide ; Decomposition reactions ; Dehydration ; Glycine ; High vacuum ; hydrates ; Irradiation ; Mars ; Mars missions ; Photodecomposition ; photodegradation ; Planetary atmospheres ; Raman spectra ; Raman spectroscopy ; Space missions ; Spectroscopy ; Spectrum analysis ; Stability ; Ultraviolet radiation ; Water chemistry</subject><ispartof>Journal of Raman spectroscopy, 2022-04, Vol.53 (4), p.724-734</ispartof><rights>2022 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1857-3312</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjrs.6301$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjrs.6301$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Bonales, Laura J.</creatorcontrib><creatorcontrib>Rodríguez‐Villagra, Nieves</creatorcontrib><creatorcontrib>Fernandez‐Sampedro, Maite</creatorcontrib><creatorcontrib>Mateo‐Martí, Eva</creatorcontrib><title>Dehydration rate of the glycine‐MgSO4·5H2O complex and the stability of glycine expelled from the complex by in situ Raman spectroscopy under Mars‐relevant conditions</title><title>Journal of Raman spectroscopy</title><description>In this work, we studied the dehydration process of the glycine‐MgSO4·5H2O complex under Mars‐relevant conditions (99% CO2 and 0.6% H2O under ultra violet (UV) irradiation exposure at 7‐mbar pressure and high vacuum conditions: 8 × 10−5 and 5 × 10−5 mbar) by in situ Raman spectroscopy inside a planetary atmosphere and surface chamber (PASC). This work provides quality Raman spectra taken under simulated planetary conditions (to be integrated in a database), as Raman spectroscopy forms part of the current and upcoming NASA and ESA Mars planetary missions. The results demonstrate that Raman spectroscopy can be used to calculate rates of dehydration of the glycine‐MgSO4·5H2O compound to study the chemical stability with respect to photodecomposition (1) of metal‐bound glycine molecules forming the complex and (2) glycine expelled from the complex, both under Mars‐simulated conditions; finally, Raman spectroscopy can also be used to quantify intermolecular interactions in terms of local pressures. Importantly, advanced detection of water molecules as part of a complex with astrobiological interest under planetary conditions plays a crucial role in planetary missions.
The evolution of Gly·MgSO4·5H2O, a molecule with planetological interest, is studied at Mars‐relevant conditions during its dehydration and UV irradiation by the in situ Raman spectroscopic. This work provides Raman spectra taken under simulated planetary conditions as Raman spectroscopy forms part in the current and upcoming NASA and ESA Mars planetary missions.</description><subject>Astrobiology</subject><subject>Carbon dioxide</subject><subject>Decomposition reactions</subject><subject>Dehydration</subject><subject>Glycine</subject><subject>High vacuum</subject><subject>hydrates</subject><subject>Irradiation</subject><subject>Mars</subject><subject>Mars missions</subject><subject>Photodecomposition</subject><subject>photodegradation</subject><subject>Planetary atmospheres</subject><subject>Raman spectra</subject><subject>Raman spectroscopy</subject><subject>Space missions</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Stability</subject><subject>Ultraviolet radiation</subject><subject>Water chemistry</subject><issn>0377-0486</issn><issn>1097-4555</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo1kUtOwzAQhi0EEqUgcQRLrFPGieMkS1QeBbWq1MI6cuNJ6yov7BSaHUfgHhyAPUfhJCRtWf2z-L6ZkX5CLhkMGIB7vTZ2IDxgR6THIAoc7vv-MemBFwQO8FCckjNr1wAQRYL1yNctrhplZK3LgraBtExpvUK6zJpEF_j78TlZzqf859sfuVOalHmV4ZbKQu0oW8uFznTddNpBobitMMtQ0dSU-Q771xYN1QW1ut7QmcxlO1aY1Ka0SVk1dFMoNHQijW2vGszwTRZ16xZKd-_Zc3KSyszixSH75OX-7nk4csbTh8fhzdipmCeYw8BjAgMeiAAwCmUKnAFPVSCZYq4vhHIZKE8mLeani0j6CkKlUKUCw1B4Xp9c7fdWpnzdoK3jdbkxRXsydgWPAs44-C3l7Kl3nWETV0bn0jQxg7jrIW57iLse4qfZvEvvD5_OgiI</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Bonales, Laura J.</creator><creator>Rodríguez‐Villagra, Nieves</creator><creator>Fernandez‐Sampedro, Maite</creator><creator>Mateo‐Martí, Eva</creator><general>Wiley Subscription Services, Inc</general><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-1857-3312</orcidid></search><sort><creationdate>202204</creationdate><title>Dehydration rate of the glycine‐MgSO4·5H2O complex and the stability of glycine expelled from the complex by in situ Raman spectroscopy under Mars‐relevant conditions</title><author>Bonales, Laura J. ; Rodríguez‐Villagra, Nieves ; Fernandez‐Sampedro, Maite ; Mateo‐Martí, Eva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1361-10316e747670e98af04104fd7a1d12566d210d3ac3165fb9a5d08ddedf6e88633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Astrobiology</topic><topic>Carbon dioxide</topic><topic>Decomposition reactions</topic><topic>Dehydration</topic><topic>Glycine</topic><topic>High vacuum</topic><topic>hydrates</topic><topic>Irradiation</topic><topic>Mars</topic><topic>Mars missions</topic><topic>Photodecomposition</topic><topic>photodegradation</topic><topic>Planetary atmospheres</topic><topic>Raman spectra</topic><topic>Raman spectroscopy</topic><topic>Space missions</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Stability</topic><topic>Ultraviolet radiation</topic><topic>Water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonales, Laura J.</creatorcontrib><creatorcontrib>Rodríguez‐Villagra, Nieves</creatorcontrib><creatorcontrib>Fernandez‐Sampedro, Maite</creatorcontrib><creatorcontrib>Mateo‐Martí, Eva</creatorcontrib><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Journal of Raman spectroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonales, Laura J.</au><au>Rodríguez‐Villagra, Nieves</au><au>Fernandez‐Sampedro, Maite</au><au>Mateo‐Martí, Eva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dehydration rate of the glycine‐MgSO4·5H2O complex and the stability of glycine expelled from the complex by in situ Raman spectroscopy under Mars‐relevant conditions</atitle><jtitle>Journal of Raman spectroscopy</jtitle><date>2022-04</date><risdate>2022</risdate><volume>53</volume><issue>4</issue><spage>724</spage><epage>734</epage><pages>724-734</pages><issn>0377-0486</issn><eissn>1097-4555</eissn><abstract>In this work, we studied the dehydration process of the glycine‐MgSO4·5H2O complex under Mars‐relevant conditions (99% CO2 and 0.6% H2O under ultra violet (UV) irradiation exposure at 7‐mbar pressure and high vacuum conditions: 8 × 10−5 and 5 × 10−5 mbar) by in situ Raman spectroscopy inside a planetary atmosphere and surface chamber (PASC). This work provides quality Raman spectra taken under simulated planetary conditions (to be integrated in a database), as Raman spectroscopy forms part of the current and upcoming NASA and ESA Mars planetary missions. The results demonstrate that Raman spectroscopy can be used to calculate rates of dehydration of the glycine‐MgSO4·5H2O compound to study the chemical stability with respect to photodecomposition (1) of metal‐bound glycine molecules forming the complex and (2) glycine expelled from the complex, both under Mars‐simulated conditions; finally, Raman spectroscopy can also be used to quantify intermolecular interactions in terms of local pressures. Importantly, advanced detection of water molecules as part of a complex with astrobiological interest under planetary conditions plays a crucial role in planetary missions.
The evolution of Gly·MgSO4·5H2O, a molecule with planetological interest, is studied at Mars‐relevant conditions during its dehydration and UV irradiation by the in situ Raman spectroscopic. This work provides Raman spectra taken under simulated planetary conditions as Raman spectroscopy forms part in the current and upcoming NASA and ESA Mars planetary missions.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jrs.6301</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1857-3312</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0486 |
ispartof | Journal of Raman spectroscopy, 2022-04, Vol.53 (4), p.724-734 |
issn | 0377-0486 1097-4555 |
language | eng |
recordid | cdi_proquest_journals_2649741405 |
source | Wiley Journals |
subjects | Astrobiology Carbon dioxide Decomposition reactions Dehydration Glycine High vacuum hydrates Irradiation Mars Mars missions Photodecomposition photodegradation Planetary atmospheres Raman spectra Raman spectroscopy Space missions Spectroscopy Spectrum analysis Stability Ultraviolet radiation Water chemistry |
title | Dehydration rate of the glycine‐MgSO4·5H2O complex and the stability of glycine expelled from the complex by in situ Raman spectroscopy under Mars‐relevant conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A41%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dehydration%20rate%20of%20the%20glycine%E2%80%90MgSO4%C2%B75H2O%20complex%20and%20the%20stability%20of%20glycine%20expelled%20from%20the%20complex%20by%20in%20situ%20Raman%20spectroscopy%20under%20Mars%E2%80%90relevant%20conditions&rft.jtitle=Journal%20of%20Raman%20spectroscopy&rft.au=Bonales,%20Laura%20J.&rft.date=2022-04&rft.volume=53&rft.issue=4&rft.spage=724&rft.epage=734&rft.pages=724-734&rft.issn=0377-0486&rft.eissn=1097-4555&rft_id=info:doi/10.1002/jrs.6301&rft_dat=%3Cproquest_wiley%3E2649741405%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2649741405&rft_id=info:pmid/&rfr_iscdi=true |