Bose–Einstein Condensation with Optimal Rate for Trapped Bosons in the Gross–Pitaevskii Regime
We consider a Bose gas consisting of N particles in R 3 , trapped by an external field and interacting through a two-body potential with scattering length of order N - 1 . We prove that low energy states exhibit complete Bose–Einstein condensation with optimal rate, generalizing previous work in Boc...
Gespeichert in:
Veröffentlicht in: | Mathematical physics, analysis, and geometry analysis, and geometry, 2022-06, Vol.25 (2), Article 12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Mathematical physics, analysis, and geometry |
container_volume | 25 |
creator | Brennecke, Christian Schlein, Benjamin Schraven, Severin |
description | We consider a Bose gas consisting of
N
particles in
R
3
, trapped by an external field and interacting through a two-body potential with scattering length of order
N
-
1
. We prove that low energy states exhibit complete Bose–Einstein condensation with optimal rate, generalizing previous work in Boccato et al. (Commun Math Phys 359(3):975–1026, 2018; 376:1311–1395, 2020), restricted to translation invariant systems. This extends recent results in Nam et al. (Preprint, 2001.
arXiv:2001.04364
), removing the smallness assumption on the size of the scattering length. |
doi_str_mv | 10.1007/s11040-022-09424-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2649728969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2649728969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2879665d211185c30eaa5d690067bc4755a2be466f5eafa6556611b3e275604b3</originalsourceid><addsrcrecordid>eNp9kMFOAyEURYnRxFr9AVckrlFgBhiW2tRq0qSmqWvCzLxpqe3MCKhx5z_4h36J1Jq4c8Vb3HMf7yB0zuglo1RdBcZoTgnlnFCd85yoAzRgQnGipZCHac4KQShT_BidhLCmCSo4HaDypgvw9fE5dm2I4Fo86toa2mCj61r85uIKz_rotnaD5zYCbjqPF972PdQ4oV0bcILiCvDEdyGkpgcXLbyGJ-fwHJZuC6foqLGbAGe_7xA93o4XozsynU3uR9dTUmVMR8ILpaUUNWeMFaLKKFgraqkplaqsciWE5SXkUjYCbGOlEFIyVmbAlZA0L7Mhutj39r57foEQzbp78W1aabjMteKFljql-D5V7f7roTG9T-f5d8Oo2bk0e5cmuTQ_Lo1KULaHQgq3S_B_1f9Q3wU4eEE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649728969</pqid></control><display><type>article</type><title>Bose–Einstein Condensation with Optimal Rate for Trapped Bosons in the Gross–Pitaevskii Regime</title><source>SpringerLink Journals - AutoHoldings</source><creator>Brennecke, Christian ; Schlein, Benjamin ; Schraven, Severin</creator><creatorcontrib>Brennecke, Christian ; Schlein, Benjamin ; Schraven, Severin</creatorcontrib><description>We consider a Bose gas consisting of
N
particles in
R
3
, trapped by an external field and interacting through a two-body potential with scattering length of order
N
-
1
. We prove that low energy states exhibit complete Bose–Einstein condensation with optimal rate, generalizing previous work in Boccato et al. (Commun Math Phys 359(3):975–1026, 2018; 376:1311–1395, 2020), restricted to translation invariant systems. This extends recent results in Nam et al. (Preprint, 2001.
arXiv:2001.04364
), removing the smallness assumption on the size of the scattering length.</description><identifier>ISSN: 1385-0172</identifier><identifier>EISSN: 1572-9656</identifier><identifier>DOI: 10.1007/s11040-022-09424-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Analysis ; Applications of Mathematics ; Bose-Einstein condensates ; Bosons ; Geometry ; Group Theory and Generalizations ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Scattering ; Theoretical</subject><ispartof>Mathematical physics, analysis, and geometry, 2022-06, Vol.25 (2), Article 12</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2879665d211185c30eaa5d690067bc4755a2be466f5eafa6556611b3e275604b3</citedby><cites>FETCH-LOGICAL-c319t-2879665d211185c30eaa5d690067bc4755a2be466f5eafa6556611b3e275604b3</cites><orcidid>0000-0002-1873-2192</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11040-022-09424-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11040-022-09424-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Brennecke, Christian</creatorcontrib><creatorcontrib>Schlein, Benjamin</creatorcontrib><creatorcontrib>Schraven, Severin</creatorcontrib><title>Bose–Einstein Condensation with Optimal Rate for Trapped Bosons in the Gross–Pitaevskii Regime</title><title>Mathematical physics, analysis, and geometry</title><addtitle>Math Phys Anal Geom</addtitle><description>We consider a Bose gas consisting of
N
particles in
R
3
, trapped by an external field and interacting through a two-body potential with scattering length of order
N
-
1
. We prove that low energy states exhibit complete Bose–Einstein condensation with optimal rate, generalizing previous work in Boccato et al. (Commun Math Phys 359(3):975–1026, 2018; 376:1311–1395, 2020), restricted to translation invariant systems. This extends recent results in Nam et al. (Preprint, 2001.
arXiv:2001.04364
), removing the smallness assumption on the size of the scattering length.</description><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Bose-Einstein condensates</subject><subject>Bosons</subject><subject>Geometry</subject><subject>Group Theory and Generalizations</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Scattering</subject><subject>Theoretical</subject><issn>1385-0172</issn><issn>1572-9656</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOAyEURYnRxFr9AVckrlFgBhiW2tRq0qSmqWvCzLxpqe3MCKhx5z_4h36J1Jq4c8Vb3HMf7yB0zuglo1RdBcZoTgnlnFCd85yoAzRgQnGipZCHac4KQShT_BidhLCmCSo4HaDypgvw9fE5dm2I4Fo86toa2mCj61r85uIKz_rotnaD5zYCbjqPF972PdQ4oV0bcILiCvDEdyGkpgcXLbyGJ-fwHJZuC6foqLGbAGe_7xA93o4XozsynU3uR9dTUmVMR8ILpaUUNWeMFaLKKFgraqkplaqsciWE5SXkUjYCbGOlEFIyVmbAlZA0L7Mhutj39r57foEQzbp78W1aabjMteKFljql-D5V7f7roTG9T-f5d8Oo2bk0e5cmuTQ_Lo1KULaHQgq3S_B_1f9Q3wU4eEE</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Brennecke, Christian</creator><creator>Schlein, Benjamin</creator><creator>Schraven, Severin</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1873-2192</orcidid></search><sort><creationdate>20220601</creationdate><title>Bose–Einstein Condensation with Optimal Rate for Trapped Bosons in the Gross–Pitaevskii Regime</title><author>Brennecke, Christian ; Schlein, Benjamin ; Schraven, Severin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2879665d211185c30eaa5d690067bc4755a2be466f5eafa6556611b3e275604b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Bose-Einstein condensates</topic><topic>Bosons</topic><topic>Geometry</topic><topic>Group Theory and Generalizations</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Scattering</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brennecke, Christian</creatorcontrib><creatorcontrib>Schlein, Benjamin</creatorcontrib><creatorcontrib>Schraven, Severin</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical physics, analysis, and geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brennecke, Christian</au><au>Schlein, Benjamin</au><au>Schraven, Severin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bose–Einstein Condensation with Optimal Rate for Trapped Bosons in the Gross–Pitaevskii Regime</atitle><jtitle>Mathematical physics, analysis, and geometry</jtitle><stitle>Math Phys Anal Geom</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>25</volume><issue>2</issue><artnum>12</artnum><issn>1385-0172</issn><eissn>1572-9656</eissn><abstract>We consider a Bose gas consisting of
N
particles in
R
3
, trapped by an external field and interacting through a two-body potential with scattering length of order
N
-
1
. We prove that low energy states exhibit complete Bose–Einstein condensation with optimal rate, generalizing previous work in Boccato et al. (Commun Math Phys 359(3):975–1026, 2018; 376:1311–1395, 2020), restricted to translation invariant systems. This extends recent results in Nam et al. (Preprint, 2001.
arXiv:2001.04364
), removing the smallness assumption on the size of the scattering length.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11040-022-09424-7</doi><orcidid>https://orcid.org/0000-0002-1873-2192</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1385-0172 |
ispartof | Mathematical physics, analysis, and geometry, 2022-06, Vol.25 (2), Article 12 |
issn | 1385-0172 1572-9656 |
language | eng |
recordid | cdi_proquest_journals_2649728969 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis Applications of Mathematics Bose-Einstein condensates Bosons Geometry Group Theory and Generalizations Mathematical and Computational Physics Physics Physics and Astronomy Scattering Theoretical |
title | Bose–Einstein Condensation with Optimal Rate for Trapped Bosons in the Gross–Pitaevskii Regime |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A35%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bose%E2%80%93Einstein%20Condensation%20with%20Optimal%20Rate%20for%20Trapped%20Bosons%20in%20the%20Gross%E2%80%93Pitaevskii%20Regime&rft.jtitle=Mathematical%20physics,%20analysis,%20and%20geometry&rft.au=Brennecke,%20Christian&rft.date=2022-06-01&rft.volume=25&rft.issue=2&rft.artnum=12&rft.issn=1385-0172&rft.eissn=1572-9656&rft_id=info:doi/10.1007/s11040-022-09424-7&rft_dat=%3Cproquest_cross%3E2649728969%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2649728969&rft_id=info:pmid/&rfr_iscdi=true |