Bose–Einstein Condensation with Optimal Rate for Trapped Bosons in the Gross–Pitaevskii Regime

We consider a Bose gas consisting of N particles in R 3 , trapped by an external field and interacting through a two-body potential with scattering length of order N - 1 . We prove that low energy states exhibit complete Bose–Einstein condensation with optimal rate, generalizing previous work in Boc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical physics, analysis, and geometry analysis, and geometry, 2022-06, Vol.25 (2), Article 12
Hauptverfasser: Brennecke, Christian, Schlein, Benjamin, Schraven, Severin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Mathematical physics, analysis, and geometry
container_volume 25
creator Brennecke, Christian
Schlein, Benjamin
Schraven, Severin
description We consider a Bose gas consisting of N particles in R 3 , trapped by an external field and interacting through a two-body potential with scattering length of order N - 1 . We prove that low energy states exhibit complete Bose–Einstein condensation with optimal rate, generalizing previous work in Boccato et al. (Commun Math Phys 359(3):975–1026, 2018; 376:1311–1395, 2020), restricted to translation invariant systems. This extends recent results in Nam et al. (Preprint, 2001. arXiv:2001.04364 ), removing the smallness assumption on the size of the scattering length.
doi_str_mv 10.1007/s11040-022-09424-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2649728969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2649728969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2879665d211185c30eaa5d690067bc4755a2be466f5eafa6556611b3e275604b3</originalsourceid><addsrcrecordid>eNp9kMFOAyEURYnRxFr9AVckrlFgBhiW2tRq0qSmqWvCzLxpqe3MCKhx5z_4h36J1Jq4c8Vb3HMf7yB0zuglo1RdBcZoTgnlnFCd85yoAzRgQnGipZCHac4KQShT_BidhLCmCSo4HaDypgvw9fE5dm2I4Fo86toa2mCj61r85uIKz_rotnaD5zYCbjqPF972PdQ4oV0bcILiCvDEdyGkpgcXLbyGJ-fwHJZuC6foqLGbAGe_7xA93o4XozsynU3uR9dTUmVMR8ILpaUUNWeMFaLKKFgraqkplaqsciWE5SXkUjYCbGOlEFIyVmbAlZA0L7Mhutj39r57foEQzbp78W1aabjMteKFljql-D5V7f7roTG9T-f5d8Oo2bk0e5cmuTQ_Lo1KULaHQgq3S_B_1f9Q3wU4eEE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649728969</pqid></control><display><type>article</type><title>Bose–Einstein Condensation with Optimal Rate for Trapped Bosons in the Gross–Pitaevskii Regime</title><source>SpringerLink Journals - AutoHoldings</source><creator>Brennecke, Christian ; Schlein, Benjamin ; Schraven, Severin</creator><creatorcontrib>Brennecke, Christian ; Schlein, Benjamin ; Schraven, Severin</creatorcontrib><description>We consider a Bose gas consisting of N particles in R 3 , trapped by an external field and interacting through a two-body potential with scattering length of order N - 1 . We prove that low energy states exhibit complete Bose–Einstein condensation with optimal rate, generalizing previous work in Boccato et al. (Commun Math Phys 359(3):975–1026, 2018; 376:1311–1395, 2020), restricted to translation invariant systems. This extends recent results in Nam et al. (Preprint, 2001. arXiv:2001.04364 ), removing the smallness assumption on the size of the scattering length.</description><identifier>ISSN: 1385-0172</identifier><identifier>EISSN: 1572-9656</identifier><identifier>DOI: 10.1007/s11040-022-09424-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Analysis ; Applications of Mathematics ; Bose-Einstein condensates ; Bosons ; Geometry ; Group Theory and Generalizations ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Scattering ; Theoretical</subject><ispartof>Mathematical physics, analysis, and geometry, 2022-06, Vol.25 (2), Article 12</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2879665d211185c30eaa5d690067bc4755a2be466f5eafa6556611b3e275604b3</citedby><cites>FETCH-LOGICAL-c319t-2879665d211185c30eaa5d690067bc4755a2be466f5eafa6556611b3e275604b3</cites><orcidid>0000-0002-1873-2192</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11040-022-09424-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11040-022-09424-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Brennecke, Christian</creatorcontrib><creatorcontrib>Schlein, Benjamin</creatorcontrib><creatorcontrib>Schraven, Severin</creatorcontrib><title>Bose–Einstein Condensation with Optimal Rate for Trapped Bosons in the Gross–Pitaevskii Regime</title><title>Mathematical physics, analysis, and geometry</title><addtitle>Math Phys Anal Geom</addtitle><description>We consider a Bose gas consisting of N particles in R 3 , trapped by an external field and interacting through a two-body potential with scattering length of order N - 1 . We prove that low energy states exhibit complete Bose–Einstein condensation with optimal rate, generalizing previous work in Boccato et al. (Commun Math Phys 359(3):975–1026, 2018; 376:1311–1395, 2020), restricted to translation invariant systems. This extends recent results in Nam et al. (Preprint, 2001. arXiv:2001.04364 ), removing the smallness assumption on the size of the scattering length.</description><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Bose-Einstein condensates</subject><subject>Bosons</subject><subject>Geometry</subject><subject>Group Theory and Generalizations</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Scattering</subject><subject>Theoretical</subject><issn>1385-0172</issn><issn>1572-9656</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOAyEURYnRxFr9AVckrlFgBhiW2tRq0qSmqWvCzLxpqe3MCKhx5z_4h36J1Jq4c8Vb3HMf7yB0zuglo1RdBcZoTgnlnFCd85yoAzRgQnGipZCHac4KQShT_BidhLCmCSo4HaDypgvw9fE5dm2I4Fo86toa2mCj61r85uIKz_rotnaD5zYCbjqPF972PdQ4oV0bcILiCvDEdyGkpgcXLbyGJ-fwHJZuC6foqLGbAGe_7xA93o4XozsynU3uR9dTUmVMR8ILpaUUNWeMFaLKKFgraqkplaqsciWE5SXkUjYCbGOlEFIyVmbAlZA0L7Mhutj39r57foEQzbp78W1aabjMteKFljql-D5V7f7roTG9T-f5d8Oo2bk0e5cmuTQ_Lo1KULaHQgq3S_B_1f9Q3wU4eEE</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Brennecke, Christian</creator><creator>Schlein, Benjamin</creator><creator>Schraven, Severin</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1873-2192</orcidid></search><sort><creationdate>20220601</creationdate><title>Bose–Einstein Condensation with Optimal Rate for Trapped Bosons in the Gross–Pitaevskii Regime</title><author>Brennecke, Christian ; Schlein, Benjamin ; Schraven, Severin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2879665d211185c30eaa5d690067bc4755a2be466f5eafa6556611b3e275604b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Bose-Einstein condensates</topic><topic>Bosons</topic><topic>Geometry</topic><topic>Group Theory and Generalizations</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Scattering</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brennecke, Christian</creatorcontrib><creatorcontrib>Schlein, Benjamin</creatorcontrib><creatorcontrib>Schraven, Severin</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical physics, analysis, and geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brennecke, Christian</au><au>Schlein, Benjamin</au><au>Schraven, Severin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bose–Einstein Condensation with Optimal Rate for Trapped Bosons in the Gross–Pitaevskii Regime</atitle><jtitle>Mathematical physics, analysis, and geometry</jtitle><stitle>Math Phys Anal Geom</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>25</volume><issue>2</issue><artnum>12</artnum><issn>1385-0172</issn><eissn>1572-9656</eissn><abstract>We consider a Bose gas consisting of N particles in R 3 , trapped by an external field and interacting through a two-body potential with scattering length of order N - 1 . We prove that low energy states exhibit complete Bose–Einstein condensation with optimal rate, generalizing previous work in Boccato et al. (Commun Math Phys 359(3):975–1026, 2018; 376:1311–1395, 2020), restricted to translation invariant systems. This extends recent results in Nam et al. (Preprint, 2001. arXiv:2001.04364 ), removing the smallness assumption on the size of the scattering length.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11040-022-09424-7</doi><orcidid>https://orcid.org/0000-0002-1873-2192</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1385-0172
ispartof Mathematical physics, analysis, and geometry, 2022-06, Vol.25 (2), Article 12
issn 1385-0172
1572-9656
language eng
recordid cdi_proquest_journals_2649728969
source SpringerLink Journals - AutoHoldings
subjects Analysis
Applications of Mathematics
Bose-Einstein condensates
Bosons
Geometry
Group Theory and Generalizations
Mathematical and Computational Physics
Physics
Physics and Astronomy
Scattering
Theoretical
title Bose–Einstein Condensation with Optimal Rate for Trapped Bosons in the Gross–Pitaevskii Regime
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A35%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bose%E2%80%93Einstein%20Condensation%20with%20Optimal%20Rate%20for%20Trapped%20Bosons%20in%20the%20Gross%E2%80%93Pitaevskii%20Regime&rft.jtitle=Mathematical%20physics,%20analysis,%20and%20geometry&rft.au=Brennecke,%20Christian&rft.date=2022-06-01&rft.volume=25&rft.issue=2&rft.artnum=12&rft.issn=1385-0172&rft.eissn=1572-9656&rft_id=info:doi/10.1007/s11040-022-09424-7&rft_dat=%3Cproquest_cross%3E2649728969%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2649728969&rft_id=info:pmid/&rfr_iscdi=true