High-throughput oxygen chemical potential engineering of perovskite oxides for chemical looping applications

Chemical looping (CL) represents a versatile, emerging strategy for sustainable chemical and energy conversion. Designing metal oxide oxygen carriers with suitable redox properties remains one of the most critical challenges to CL due to the considerably different thermodynamic property requirements...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2022-04, Vol.15 (4), p.1512-1528
Hauptverfasser: Wang, Xijun, Gao, Yunfei, Krzystowczyk, Emily, Iftikhar, Sherafghan, Dou, Jian, Cai, Runxia, Wang, Haiying, Ruan, Chongyan, Ye, Sheng, Li, Fanxing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1528
container_issue 4
container_start_page 1512
container_title Energy & environmental science
container_volume 15
creator Wang, Xijun
Gao, Yunfei
Krzystowczyk, Emily
Iftikhar, Sherafghan
Dou, Jian
Cai, Runxia
Wang, Haiying
Ruan, Chongyan
Ye, Sheng
Li, Fanxing
description Chemical looping (CL) represents a versatile, emerging strategy for sustainable chemical and energy conversion. Designing metal oxide oxygen carriers with suitable redox properties remains one of the most critical challenges to CL due to the considerably different thermodynamic property requirements for different applications. Taking SrFeO 3− δ as a base-structure, this study seeks to rationally substitute its A- and/or B-site cations to tailor the equilibrium oxygen partial pressure over 20 orders of magnitude. 2401 Sr x A 1− x Fe y B 1− y O 3− δ perovskite-phase structures were investigated using high-throughput density functional theory (DFT) and 227, 273 high-entropy perovskites were screened via machine learning (ML). This significantly expands the materials design space. While most of the compositions predicted are new and nonobvious, 19 previously reported oxygen carriers, with excellent redox properties, were correctly identified by the algorithm. Moreover, we experimentally demonstrated 15 new oxygen carriers with superior redox performance. These results support the effectiveness of the high-throughput approaches for accelerated materials discovery. Integrating DFT, machine learning and experimental verifications, a high-throughput screening scheme is performed to rationally engineer the redox properties of SrFeO 3− δ based perovskites for chemical looping applications.
doi_str_mv 10.1039/d1ee02889h
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2649480883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2649480883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-8af8e983ac0244ee42bd8a9b3bf6ff807856398720c324d7b163065203529d5b3</originalsourceid><addsrcrecordid>eNpFkc1LxDAQxYsouK5evAtFb0I1TdI0Ocq6usKCFz2HNp22WbtJTVJx_3u71o_TPIbfGx5voug8RTcpIuK2SgEQ5ly0B9EszTOaZDlih7-aCXwcnXi_QYhhlItZ1K100yahdXZo2n4Isf3cNWBi1cJWq6KLexvABD0qMI02AE6bJrZ13IOzH_5NBxg9ugIf19b9-zpr-z1Z9H03LoK2xp9GR3XReTj7mfPo9WH5slgl6-fHp8XdOlGE0pDwouYgOCkUwpQCUFxWvBAlKWtW1xzlPGNE8BwjRTCt8jJlBLEMI5JhUWUlmUeX013rg5ZejRlVq6wxoIJMOWWEohG6mqDe2fcBfJAbOzgz5pKYUUE54pyM1PVEKWe9d1DL3ult4XYyRXJfubxPl8vvylcjfDHBzqs_7v8l5AvZU368</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649480883</pqid></control><display><type>article</type><title>High-throughput oxygen chemical potential engineering of perovskite oxides for chemical looping applications</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Wang, Xijun ; Gao, Yunfei ; Krzystowczyk, Emily ; Iftikhar, Sherafghan ; Dou, Jian ; Cai, Runxia ; Wang, Haiying ; Ruan, Chongyan ; Ye, Sheng ; Li, Fanxing</creator><creatorcontrib>Wang, Xijun ; Gao, Yunfei ; Krzystowczyk, Emily ; Iftikhar, Sherafghan ; Dou, Jian ; Cai, Runxia ; Wang, Haiying ; Ruan, Chongyan ; Ye, Sheng ; Li, Fanxing</creatorcontrib><description>Chemical looping (CL) represents a versatile, emerging strategy for sustainable chemical and energy conversion. Designing metal oxide oxygen carriers with suitable redox properties remains one of the most critical challenges to CL due to the considerably different thermodynamic property requirements for different applications. Taking SrFeO 3− δ as a base-structure, this study seeks to rationally substitute its A- and/or B-site cations to tailor the equilibrium oxygen partial pressure over 20 orders of magnitude. 2401 Sr x A 1− x Fe y B 1− y O 3− δ perovskite-phase structures were investigated using high-throughput density functional theory (DFT) and 227, 273 high-entropy perovskites were screened via machine learning (ML). This significantly expands the materials design space. While most of the compositions predicted are new and nonobvious, 19 previously reported oxygen carriers, with excellent redox properties, were correctly identified by the algorithm. Moreover, we experimentally demonstrated 15 new oxygen carriers with superior redox performance. These results support the effectiveness of the high-throughput approaches for accelerated materials discovery. Integrating DFT, machine learning and experimental verifications, a high-throughput screening scheme is performed to rationally engineer the redox properties of SrFeO 3− δ based perovskites for chemical looping applications.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d1ee02889h</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Algorithms ; Cations ; Chemical potential ; Density functional theory ; Energy conversion ; Entropy ; Machine learning ; Metal oxides ; Oxygen ; Partial pressure ; Perovskites ; Redox properties</subject><ispartof>Energy &amp; environmental science, 2022-04, Vol.15 (4), p.1512-1528</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-8af8e983ac0244ee42bd8a9b3bf6ff807856398720c324d7b163065203529d5b3</citedby><cites>FETCH-LOGICAL-c344t-8af8e983ac0244ee42bd8a9b3bf6ff807856398720c324d7b163065203529d5b3</cites><orcidid>0000-0002-6757-1874 ; 0000-0001-9155-7653 ; 0000000267571874 ; 0000000191557653</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1846340$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Xijun</creatorcontrib><creatorcontrib>Gao, Yunfei</creatorcontrib><creatorcontrib>Krzystowczyk, Emily</creatorcontrib><creatorcontrib>Iftikhar, Sherafghan</creatorcontrib><creatorcontrib>Dou, Jian</creatorcontrib><creatorcontrib>Cai, Runxia</creatorcontrib><creatorcontrib>Wang, Haiying</creatorcontrib><creatorcontrib>Ruan, Chongyan</creatorcontrib><creatorcontrib>Ye, Sheng</creatorcontrib><creatorcontrib>Li, Fanxing</creatorcontrib><title>High-throughput oxygen chemical potential engineering of perovskite oxides for chemical looping applications</title><title>Energy &amp; environmental science</title><description>Chemical looping (CL) represents a versatile, emerging strategy for sustainable chemical and energy conversion. Designing metal oxide oxygen carriers with suitable redox properties remains one of the most critical challenges to CL due to the considerably different thermodynamic property requirements for different applications. Taking SrFeO 3− δ as a base-structure, this study seeks to rationally substitute its A- and/or B-site cations to tailor the equilibrium oxygen partial pressure over 20 orders of magnitude. 2401 Sr x A 1− x Fe y B 1− y O 3− δ perovskite-phase structures were investigated using high-throughput density functional theory (DFT) and 227, 273 high-entropy perovskites were screened via machine learning (ML). This significantly expands the materials design space. While most of the compositions predicted are new and nonobvious, 19 previously reported oxygen carriers, with excellent redox properties, were correctly identified by the algorithm. Moreover, we experimentally demonstrated 15 new oxygen carriers with superior redox performance. These results support the effectiveness of the high-throughput approaches for accelerated materials discovery. Integrating DFT, machine learning and experimental verifications, a high-throughput screening scheme is performed to rationally engineer the redox properties of SrFeO 3− δ based perovskites for chemical looping applications.</description><subject>Algorithms</subject><subject>Cations</subject><subject>Chemical potential</subject><subject>Density functional theory</subject><subject>Energy conversion</subject><subject>Entropy</subject><subject>Machine learning</subject><subject>Metal oxides</subject><subject>Oxygen</subject><subject>Partial pressure</subject><subject>Perovskites</subject><subject>Redox properties</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkc1LxDAQxYsouK5evAtFb0I1TdI0Ocq6usKCFz2HNp22WbtJTVJx_3u71o_TPIbfGx5voug8RTcpIuK2SgEQ5ly0B9EszTOaZDlih7-aCXwcnXi_QYhhlItZ1K100yahdXZo2n4Isf3cNWBi1cJWq6KLexvABD0qMI02AE6bJrZ13IOzH_5NBxg9ugIf19b9-zpr-z1Z9H03LoK2xp9GR3XReTj7mfPo9WH5slgl6-fHp8XdOlGE0pDwouYgOCkUwpQCUFxWvBAlKWtW1xzlPGNE8BwjRTCt8jJlBLEMI5JhUWUlmUeX013rg5ZejRlVq6wxoIJMOWWEohG6mqDe2fcBfJAbOzgz5pKYUUE54pyM1PVEKWe9d1DL3ult4XYyRXJfubxPl8vvylcjfDHBzqs_7v8l5AvZU368</recordid><startdate>20220413</startdate><enddate>20220413</enddate><creator>Wang, Xijun</creator><creator>Gao, Yunfei</creator><creator>Krzystowczyk, Emily</creator><creator>Iftikhar, Sherafghan</creator><creator>Dou, Jian</creator><creator>Cai, Runxia</creator><creator>Wang, Haiying</creator><creator>Ruan, Chongyan</creator><creator>Ye, Sheng</creator><creator>Li, Fanxing</creator><general>Royal Society of Chemistry</general><general>Royal Society of Chemistry (RSC)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6757-1874</orcidid><orcidid>https://orcid.org/0000-0001-9155-7653</orcidid><orcidid>https://orcid.org/0000000267571874</orcidid><orcidid>https://orcid.org/0000000191557653</orcidid></search><sort><creationdate>20220413</creationdate><title>High-throughput oxygen chemical potential engineering of perovskite oxides for chemical looping applications</title><author>Wang, Xijun ; Gao, Yunfei ; Krzystowczyk, Emily ; Iftikhar, Sherafghan ; Dou, Jian ; Cai, Runxia ; Wang, Haiying ; Ruan, Chongyan ; Ye, Sheng ; Li, Fanxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-8af8e983ac0244ee42bd8a9b3bf6ff807856398720c324d7b163065203529d5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Cations</topic><topic>Chemical potential</topic><topic>Density functional theory</topic><topic>Energy conversion</topic><topic>Entropy</topic><topic>Machine learning</topic><topic>Metal oxides</topic><topic>Oxygen</topic><topic>Partial pressure</topic><topic>Perovskites</topic><topic>Redox properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xijun</creatorcontrib><creatorcontrib>Gao, Yunfei</creatorcontrib><creatorcontrib>Krzystowczyk, Emily</creatorcontrib><creatorcontrib>Iftikhar, Sherafghan</creatorcontrib><creatorcontrib>Dou, Jian</creatorcontrib><creatorcontrib>Cai, Runxia</creatorcontrib><creatorcontrib>Wang, Haiying</creatorcontrib><creatorcontrib>Ruan, Chongyan</creatorcontrib><creatorcontrib>Ye, Sheng</creatorcontrib><creatorcontrib>Li, Fanxing</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xijun</au><au>Gao, Yunfei</au><au>Krzystowczyk, Emily</au><au>Iftikhar, Sherafghan</au><au>Dou, Jian</au><au>Cai, Runxia</au><au>Wang, Haiying</au><au>Ruan, Chongyan</au><au>Ye, Sheng</au><au>Li, Fanxing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-throughput oxygen chemical potential engineering of perovskite oxides for chemical looping applications</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2022-04-13</date><risdate>2022</risdate><volume>15</volume><issue>4</issue><spage>1512</spage><epage>1528</epage><pages>1512-1528</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Chemical looping (CL) represents a versatile, emerging strategy for sustainable chemical and energy conversion. Designing metal oxide oxygen carriers with suitable redox properties remains one of the most critical challenges to CL due to the considerably different thermodynamic property requirements for different applications. Taking SrFeO 3− δ as a base-structure, this study seeks to rationally substitute its A- and/or B-site cations to tailor the equilibrium oxygen partial pressure over 20 orders of magnitude. 2401 Sr x A 1− x Fe y B 1− y O 3− δ perovskite-phase structures were investigated using high-throughput density functional theory (DFT) and 227, 273 high-entropy perovskites were screened via machine learning (ML). This significantly expands the materials design space. While most of the compositions predicted are new and nonobvious, 19 previously reported oxygen carriers, with excellent redox properties, were correctly identified by the algorithm. Moreover, we experimentally demonstrated 15 new oxygen carriers with superior redox performance. These results support the effectiveness of the high-throughput approaches for accelerated materials discovery. Integrating DFT, machine learning and experimental verifications, a high-throughput screening scheme is performed to rationally engineer the redox properties of SrFeO 3− δ based perovskites for chemical looping applications.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1ee02889h</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6757-1874</orcidid><orcidid>https://orcid.org/0000-0001-9155-7653</orcidid><orcidid>https://orcid.org/0000000267571874</orcidid><orcidid>https://orcid.org/0000000191557653</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2022-04, Vol.15 (4), p.1512-1528
issn 1754-5692
1754-5706
language eng
recordid cdi_proquest_journals_2649480883
source Royal Society Of Chemistry Journals 2008-
subjects Algorithms
Cations
Chemical potential
Density functional theory
Energy conversion
Entropy
Machine learning
Metal oxides
Oxygen
Partial pressure
Perovskites
Redox properties
title High-throughput oxygen chemical potential engineering of perovskite oxides for chemical looping applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A11%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-throughput%20oxygen%20chemical%20potential%20engineering%20of%20perovskite%20oxides%20for%20chemical%20looping%20applications&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Wang,%20Xijun&rft.date=2022-04-13&rft.volume=15&rft.issue=4&rft.spage=1512&rft.epage=1528&rft.pages=1512-1528&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d1ee02889h&rft_dat=%3Cproquest_cross%3E2649480883%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2649480883&rft_id=info:pmid/&rfr_iscdi=true