High-throughput oxygen chemical potential engineering of perovskite oxides for chemical looping applications
Chemical looping (CL) represents a versatile, emerging strategy for sustainable chemical and energy conversion. Designing metal oxide oxygen carriers with suitable redox properties remains one of the most critical challenges to CL due to the considerably different thermodynamic property requirements...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2022-04, Vol.15 (4), p.1512-1528 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1528 |
---|---|
container_issue | 4 |
container_start_page | 1512 |
container_title | Energy & environmental science |
container_volume | 15 |
creator | Wang, Xijun Gao, Yunfei Krzystowczyk, Emily Iftikhar, Sherafghan Dou, Jian Cai, Runxia Wang, Haiying Ruan, Chongyan Ye, Sheng Li, Fanxing |
description | Chemical looping (CL) represents a versatile, emerging strategy for sustainable chemical and energy conversion. Designing metal oxide oxygen carriers with suitable redox properties remains one of the most critical challenges to CL due to the considerably different thermodynamic property requirements for different applications. Taking SrFeO
3−
δ
as a base-structure, this study seeks to rationally substitute its A- and/or B-site cations to tailor the equilibrium oxygen partial pressure over 20 orders of magnitude. 2401 Sr
x
A
1−
x
Fe
y
B
1−
y
O
3−
δ
perovskite-phase structures were investigated using high-throughput density functional theory (DFT) and 227, 273 high-entropy perovskites were screened
via
machine learning (ML). This significantly expands the materials design space. While most of the compositions predicted are new and nonobvious, 19 previously reported oxygen carriers, with excellent redox properties, were correctly identified by the algorithm. Moreover, we experimentally demonstrated 15 new oxygen carriers with superior redox performance. These results support the effectiveness of the high-throughput approaches for accelerated materials discovery.
Integrating DFT, machine learning and experimental verifications, a high-throughput screening scheme is performed to rationally engineer the redox properties of SrFeO
3−
δ
based perovskites for chemical looping applications. |
doi_str_mv | 10.1039/d1ee02889h |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2649480883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2649480883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-8af8e983ac0244ee42bd8a9b3bf6ff807856398720c324d7b163065203529d5b3</originalsourceid><addsrcrecordid>eNpFkc1LxDAQxYsouK5evAtFb0I1TdI0Ocq6usKCFz2HNp22WbtJTVJx_3u71o_TPIbfGx5voug8RTcpIuK2SgEQ5ly0B9EszTOaZDlih7-aCXwcnXi_QYhhlItZ1K100yahdXZo2n4Isf3cNWBi1cJWq6KLexvABD0qMI02AE6bJrZ13IOzH_5NBxg9ugIf19b9-zpr-z1Z9H03LoK2xp9GR3XReTj7mfPo9WH5slgl6-fHp8XdOlGE0pDwouYgOCkUwpQCUFxWvBAlKWtW1xzlPGNE8BwjRTCt8jJlBLEMI5JhUWUlmUeX013rg5ZejRlVq6wxoIJMOWWEohG6mqDe2fcBfJAbOzgz5pKYUUE54pyM1PVEKWe9d1DL3ult4XYyRXJfubxPl8vvylcjfDHBzqs_7v8l5AvZU368</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649480883</pqid></control><display><type>article</type><title>High-throughput oxygen chemical potential engineering of perovskite oxides for chemical looping applications</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Wang, Xijun ; Gao, Yunfei ; Krzystowczyk, Emily ; Iftikhar, Sherafghan ; Dou, Jian ; Cai, Runxia ; Wang, Haiying ; Ruan, Chongyan ; Ye, Sheng ; Li, Fanxing</creator><creatorcontrib>Wang, Xijun ; Gao, Yunfei ; Krzystowczyk, Emily ; Iftikhar, Sherafghan ; Dou, Jian ; Cai, Runxia ; Wang, Haiying ; Ruan, Chongyan ; Ye, Sheng ; Li, Fanxing</creatorcontrib><description>Chemical looping (CL) represents a versatile, emerging strategy for sustainable chemical and energy conversion. Designing metal oxide oxygen carriers with suitable redox properties remains one of the most critical challenges to CL due to the considerably different thermodynamic property requirements for different applications. Taking SrFeO
3−
δ
as a base-structure, this study seeks to rationally substitute its A- and/or B-site cations to tailor the equilibrium oxygen partial pressure over 20 orders of magnitude. 2401 Sr
x
A
1−
x
Fe
y
B
1−
y
O
3−
δ
perovskite-phase structures were investigated using high-throughput density functional theory (DFT) and 227, 273 high-entropy perovskites were screened
via
machine learning (ML). This significantly expands the materials design space. While most of the compositions predicted are new and nonobvious, 19 previously reported oxygen carriers, with excellent redox properties, were correctly identified by the algorithm. Moreover, we experimentally demonstrated 15 new oxygen carriers with superior redox performance. These results support the effectiveness of the high-throughput approaches for accelerated materials discovery.
Integrating DFT, machine learning and experimental verifications, a high-throughput screening scheme is performed to rationally engineer the redox properties of SrFeO
3−
δ
based perovskites for chemical looping applications.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d1ee02889h</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Algorithms ; Cations ; Chemical potential ; Density functional theory ; Energy conversion ; Entropy ; Machine learning ; Metal oxides ; Oxygen ; Partial pressure ; Perovskites ; Redox properties</subject><ispartof>Energy & environmental science, 2022-04, Vol.15 (4), p.1512-1528</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-8af8e983ac0244ee42bd8a9b3bf6ff807856398720c324d7b163065203529d5b3</citedby><cites>FETCH-LOGICAL-c344t-8af8e983ac0244ee42bd8a9b3bf6ff807856398720c324d7b163065203529d5b3</cites><orcidid>0000-0002-6757-1874 ; 0000-0001-9155-7653 ; 0000000267571874 ; 0000000191557653</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1846340$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Xijun</creatorcontrib><creatorcontrib>Gao, Yunfei</creatorcontrib><creatorcontrib>Krzystowczyk, Emily</creatorcontrib><creatorcontrib>Iftikhar, Sherafghan</creatorcontrib><creatorcontrib>Dou, Jian</creatorcontrib><creatorcontrib>Cai, Runxia</creatorcontrib><creatorcontrib>Wang, Haiying</creatorcontrib><creatorcontrib>Ruan, Chongyan</creatorcontrib><creatorcontrib>Ye, Sheng</creatorcontrib><creatorcontrib>Li, Fanxing</creatorcontrib><title>High-throughput oxygen chemical potential engineering of perovskite oxides for chemical looping applications</title><title>Energy & environmental science</title><description>Chemical looping (CL) represents a versatile, emerging strategy for sustainable chemical and energy conversion. Designing metal oxide oxygen carriers with suitable redox properties remains one of the most critical challenges to CL due to the considerably different thermodynamic property requirements for different applications. Taking SrFeO
3−
δ
as a base-structure, this study seeks to rationally substitute its A- and/or B-site cations to tailor the equilibrium oxygen partial pressure over 20 orders of magnitude. 2401 Sr
x
A
1−
x
Fe
y
B
1−
y
O
3−
δ
perovskite-phase structures were investigated using high-throughput density functional theory (DFT) and 227, 273 high-entropy perovskites were screened
via
machine learning (ML). This significantly expands the materials design space. While most of the compositions predicted are new and nonobvious, 19 previously reported oxygen carriers, with excellent redox properties, were correctly identified by the algorithm. Moreover, we experimentally demonstrated 15 new oxygen carriers with superior redox performance. These results support the effectiveness of the high-throughput approaches for accelerated materials discovery.
Integrating DFT, machine learning and experimental verifications, a high-throughput screening scheme is performed to rationally engineer the redox properties of SrFeO
3−
δ
based perovskites for chemical looping applications.</description><subject>Algorithms</subject><subject>Cations</subject><subject>Chemical potential</subject><subject>Density functional theory</subject><subject>Energy conversion</subject><subject>Entropy</subject><subject>Machine learning</subject><subject>Metal oxides</subject><subject>Oxygen</subject><subject>Partial pressure</subject><subject>Perovskites</subject><subject>Redox properties</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkc1LxDAQxYsouK5evAtFb0I1TdI0Ocq6usKCFz2HNp22WbtJTVJx_3u71o_TPIbfGx5voug8RTcpIuK2SgEQ5ly0B9EszTOaZDlih7-aCXwcnXi_QYhhlItZ1K100yahdXZo2n4Isf3cNWBi1cJWq6KLexvABD0qMI02AE6bJrZ13IOzH_5NBxg9ugIf19b9-zpr-z1Z9H03LoK2xp9GR3XReTj7mfPo9WH5slgl6-fHp8XdOlGE0pDwouYgOCkUwpQCUFxWvBAlKWtW1xzlPGNE8BwjRTCt8jJlBLEMI5JhUWUlmUeX013rg5ZejRlVq6wxoIJMOWWEohG6mqDe2fcBfJAbOzgz5pKYUUE54pyM1PVEKWe9d1DL3ult4XYyRXJfubxPl8vvylcjfDHBzqs_7v8l5AvZU368</recordid><startdate>20220413</startdate><enddate>20220413</enddate><creator>Wang, Xijun</creator><creator>Gao, Yunfei</creator><creator>Krzystowczyk, Emily</creator><creator>Iftikhar, Sherafghan</creator><creator>Dou, Jian</creator><creator>Cai, Runxia</creator><creator>Wang, Haiying</creator><creator>Ruan, Chongyan</creator><creator>Ye, Sheng</creator><creator>Li, Fanxing</creator><general>Royal Society of Chemistry</general><general>Royal Society of Chemistry (RSC)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6757-1874</orcidid><orcidid>https://orcid.org/0000-0001-9155-7653</orcidid><orcidid>https://orcid.org/0000000267571874</orcidid><orcidid>https://orcid.org/0000000191557653</orcidid></search><sort><creationdate>20220413</creationdate><title>High-throughput oxygen chemical potential engineering of perovskite oxides for chemical looping applications</title><author>Wang, Xijun ; Gao, Yunfei ; Krzystowczyk, Emily ; Iftikhar, Sherafghan ; Dou, Jian ; Cai, Runxia ; Wang, Haiying ; Ruan, Chongyan ; Ye, Sheng ; Li, Fanxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-8af8e983ac0244ee42bd8a9b3bf6ff807856398720c324d7b163065203529d5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Cations</topic><topic>Chemical potential</topic><topic>Density functional theory</topic><topic>Energy conversion</topic><topic>Entropy</topic><topic>Machine learning</topic><topic>Metal oxides</topic><topic>Oxygen</topic><topic>Partial pressure</topic><topic>Perovskites</topic><topic>Redox properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xijun</creatorcontrib><creatorcontrib>Gao, Yunfei</creatorcontrib><creatorcontrib>Krzystowczyk, Emily</creatorcontrib><creatorcontrib>Iftikhar, Sherafghan</creatorcontrib><creatorcontrib>Dou, Jian</creatorcontrib><creatorcontrib>Cai, Runxia</creatorcontrib><creatorcontrib>Wang, Haiying</creatorcontrib><creatorcontrib>Ruan, Chongyan</creatorcontrib><creatorcontrib>Ye, Sheng</creatorcontrib><creatorcontrib>Li, Fanxing</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xijun</au><au>Gao, Yunfei</au><au>Krzystowczyk, Emily</au><au>Iftikhar, Sherafghan</au><au>Dou, Jian</au><au>Cai, Runxia</au><au>Wang, Haiying</au><au>Ruan, Chongyan</au><au>Ye, Sheng</au><au>Li, Fanxing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-throughput oxygen chemical potential engineering of perovskite oxides for chemical looping applications</atitle><jtitle>Energy & environmental science</jtitle><date>2022-04-13</date><risdate>2022</risdate><volume>15</volume><issue>4</issue><spage>1512</spage><epage>1528</epage><pages>1512-1528</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Chemical looping (CL) represents a versatile, emerging strategy for sustainable chemical and energy conversion. Designing metal oxide oxygen carriers with suitable redox properties remains one of the most critical challenges to CL due to the considerably different thermodynamic property requirements for different applications. Taking SrFeO
3−
δ
as a base-structure, this study seeks to rationally substitute its A- and/or B-site cations to tailor the equilibrium oxygen partial pressure over 20 orders of magnitude. 2401 Sr
x
A
1−
x
Fe
y
B
1−
y
O
3−
δ
perovskite-phase structures were investigated using high-throughput density functional theory (DFT) and 227, 273 high-entropy perovskites were screened
via
machine learning (ML). This significantly expands the materials design space. While most of the compositions predicted are new and nonobvious, 19 previously reported oxygen carriers, with excellent redox properties, were correctly identified by the algorithm. Moreover, we experimentally demonstrated 15 new oxygen carriers with superior redox performance. These results support the effectiveness of the high-throughput approaches for accelerated materials discovery.
Integrating DFT, machine learning and experimental verifications, a high-throughput screening scheme is performed to rationally engineer the redox properties of SrFeO
3−
δ
based perovskites for chemical looping applications.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1ee02889h</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6757-1874</orcidid><orcidid>https://orcid.org/0000-0001-9155-7653</orcidid><orcidid>https://orcid.org/0000000267571874</orcidid><orcidid>https://orcid.org/0000000191557653</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2022-04, Vol.15 (4), p.1512-1528 |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_proquest_journals_2649480883 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Algorithms Cations Chemical potential Density functional theory Energy conversion Entropy Machine learning Metal oxides Oxygen Partial pressure Perovskites Redox properties |
title | High-throughput oxygen chemical potential engineering of perovskite oxides for chemical looping applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A11%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-throughput%20oxygen%20chemical%20potential%20engineering%20of%20perovskite%20oxides%20for%20chemical%20looping%20applications&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Wang,%20Xijun&rft.date=2022-04-13&rft.volume=15&rft.issue=4&rft.spage=1512&rft.epage=1528&rft.pages=1512-1528&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d1ee02889h&rft_dat=%3Cproquest_cross%3E2649480883%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2649480883&rft_id=info:pmid/&rfr_iscdi=true |