Partially Linear Models under Data Combination

We study partially linear models when the outcome of interest and some of the covariates are observed in two different datasets that cannot be linked. This type of data combination problem arises very frequently in empirical microeconomics. Using recent tools from optimal transport theory, we derive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-08
Hauptverfasser: D'Haultfœuille, Xavier, Gaillac, Christophe, Maurel, Arnaud
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator D'Haultfœuille, Xavier
Gaillac, Christophe
Maurel, Arnaud
description We study partially linear models when the outcome of interest and some of the covariates are observed in two different datasets that cannot be linked. This type of data combination problem arises very frequently in empirical microeconomics. Using recent tools from optimal transport theory, we derive a constructive characterization of the sharp identified set. We then build on this result and develop a novel inference method that exploits the specific geometric properties of the identified set. Our method exhibits good performances in finite samples, while remaining very tractable. We apply our approach to study intergenerational income mobility over the period 1850-1930 in the United States. Our method allows us to relax the exclusion restrictions used in earlier work, while delivering confidence regions that are informative.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2649432602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2649432602</sourcerecordid><originalsourceid>FETCH-proquest_journals_26494326023</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQC0gsKslMzMmpVPDJzEtNLFLwzU9JzSlWKM1LSS1ScEksSVRwzs9NysxLLMnMz-NhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjMxNLE2MjMwMjY-JUAQDdDDIb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649432602</pqid></control><display><type>article</type><title>Partially Linear Models under Data Combination</title><source>Free E- Journals</source><creator>D'Haultfœuille, Xavier ; Gaillac, Christophe ; Maurel, Arnaud</creator><creatorcontrib>D'Haultfœuille, Xavier ; Gaillac, Christophe ; Maurel, Arnaud</creatorcontrib><description>We study partially linear models when the outcome of interest and some of the covariates are observed in two different datasets that cannot be linked. This type of data combination problem arises very frequently in empirical microeconomics. Using recent tools from optimal transport theory, we derive a constructive characterization of the sharp identified set. We then build on this result and develop a novel inference method that exploits the specific geometric properties of the identified set. Our method exhibits good performances in finite samples, while remaining very tractable. We apply our approach to study intergenerational income mobility over the period 1850-1930 in the United States. Our method allows us to relax the exclusion restrictions used in earlier work, while delivering confidence regions that are informative.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Inference ; Transport theory</subject><ispartof>arXiv.org, 2023-08</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>D'Haultfœuille, Xavier</creatorcontrib><creatorcontrib>Gaillac, Christophe</creatorcontrib><creatorcontrib>Maurel, Arnaud</creatorcontrib><title>Partially Linear Models under Data Combination</title><title>arXiv.org</title><description>We study partially linear models when the outcome of interest and some of the covariates are observed in two different datasets that cannot be linked. This type of data combination problem arises very frequently in empirical microeconomics. Using recent tools from optimal transport theory, we derive a constructive characterization of the sharp identified set. We then build on this result and develop a novel inference method that exploits the specific geometric properties of the identified set. Our method exhibits good performances in finite samples, while remaining very tractable. We apply our approach to study intergenerational income mobility over the period 1850-1930 in the United States. Our method allows us to relax the exclusion restrictions used in earlier work, while delivering confidence regions that are informative.</description><subject>Inference</subject><subject>Transport theory</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQC0gsKslMzMmpVPDJzEtNLFLwzU9JzSlWKM1LSS1ScEksSVRwzs9NysxLLMnMz-NhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjMxNLE2MjMwMjY-JUAQDdDDIb</recordid><startdate>20230822</startdate><enddate>20230822</enddate><creator>D'Haultfœuille, Xavier</creator><creator>Gaillac, Christophe</creator><creator>Maurel, Arnaud</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230822</creationdate><title>Partially Linear Models under Data Combination</title><author>D'Haultfœuille, Xavier ; Gaillac, Christophe ; Maurel, Arnaud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26494326023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Inference</topic><topic>Transport theory</topic><toplevel>online_resources</toplevel><creatorcontrib>D'Haultfœuille, Xavier</creatorcontrib><creatorcontrib>Gaillac, Christophe</creatorcontrib><creatorcontrib>Maurel, Arnaud</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>D'Haultfœuille, Xavier</au><au>Gaillac, Christophe</au><au>Maurel, Arnaud</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Partially Linear Models under Data Combination</atitle><jtitle>arXiv.org</jtitle><date>2023-08-22</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We study partially linear models when the outcome of interest and some of the covariates are observed in two different datasets that cannot be linked. This type of data combination problem arises very frequently in empirical microeconomics. Using recent tools from optimal transport theory, we derive a constructive characterization of the sharp identified set. We then build on this result and develop a novel inference method that exploits the specific geometric properties of the identified set. Our method exhibits good performances in finite samples, while remaining very tractable. We apply our approach to study intergenerational income mobility over the period 1850-1930 in the United States. Our method allows us to relax the exclusion restrictions used in earlier work, while delivering confidence regions that are informative.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2649432602
source Free E- Journals
subjects Inference
Transport theory
title Partially Linear Models under Data Combination
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A57%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Partially%20Linear%20Models%20under%20Data%20Combination&rft.jtitle=arXiv.org&rft.au=D'Haultf%C5%93uille,%20Xavier&rft.date=2023-08-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2649432602%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2649432602&rft_id=info:pmid/&rfr_iscdi=true