Influence of PVP on Bi25FeO40 microcubes for Supercapacitors and Dye-Sensitized Solar Cells applications

Polyvinylpyrrolidone (PVP)-assisted Bi 25 FeO 40 microcubes have been synthesized through hydrothermal technique and the effect of morphology on the electrochemical energy storage and energy conversion is investigated. The crystalline structure, phase, morphology, and quantum states of the samples a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2022-04, Vol.33 (12), p.9512-9524
Hauptverfasser: Muthu Kumar, A., Ragavendran, V., Mayandi, J., Ramachandran, K., Jayakumar, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9524
container_issue 12
container_start_page 9512
container_title Journal of materials science. Materials in electronics
container_volume 33
creator Muthu Kumar, A.
Ragavendran, V.
Mayandi, J.
Ramachandran, K.
Jayakumar, K.
description Polyvinylpyrrolidone (PVP)-assisted Bi 25 FeO 40 microcubes have been synthesized through hydrothermal technique and the effect of morphology on the electrochemical energy storage and energy conversion is investigated. The crystalline structure, phase, morphology, and quantum states of the samples are characterized and analyzed by X-ray diffraction, Raman Spectroscopy, Scanning Electron Microscopy and X-ray photoelectron spectroscopy, respectively. According to galvanostatic charge–discharge results, 7 wt% PVP in Bi 25 FeO 40 has a greater specific capacitance of 232 F g −1 at 4 A g −1 and a maximum capacitive retention of 84% after 1000 cycles. The synthesized samples are also utilized as a counter electrode (CE) for Dye-Sensitized Solar Cells (DSSCs) against the TiO 2 /N719/iodolyte redox pair. The Cyclic Voltammetry, Tafel polarization, and electrochemical impedance spectra of the Bi 25 FeO 40 CEs are described in depth, as are their electrocatalytic activity. It is discovered that Bi 25 FeO 40 is not only a viable supercapacitor candidate, but also an option for CE in DSSCs. The energy conversion and storage characteristics of Bi 25 FeO 40 are essential for the future development of photo-integrated supercapacitors.
doi_str_mv 10.1007/s10854-021-07471-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2649428254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2649428254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c3055bee39468a2f511f6072717738d4ae51b0ad914ae4bc414e0eb8ce0de5a03</originalsourceid><addsrcrecordid>eNp9kEFPwzAMhSMEEmPwBzhF4lxw0qRpjzAYTJq0SQPELUpTFzp1TUnaw_j1dBSJGxfbkt97lj9CLhlcMwB1ExikUkTAWQRKKBaJIzJhUsWRSPnbMZlAJlUkJOen5CyELQAkIk4n5GPRlHWPjUXqSrp-XVPX0LuKyzmuBNBdZb2zfY6Bls7TTd-it6Y1tuqcD9Q0Bb3fY7TBJlRd9YUF3bjaeDrDuh7WbVtX1nSVa8I5OSlNHfDit0_Jy_zhefYULVePi9ntMrIxy7qhgpQ5YpyJJDW8lIyVCSiumFJxWgiDkuVgiowNo8itYAIB89QiFCgNxFNyNea23n32GDq9db1vhpOaJyITPOVSDCo-qob3QvBY6tZXO-P3moE-ENUjUT0Q1T9E9cEUj6YwiJt39H_R_7i-AZDreMU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649428254</pqid></control><display><type>article</type><title>Influence of PVP on Bi25FeO40 microcubes for Supercapacitors and Dye-Sensitized Solar Cells applications</title><source>Springer Journals</source><creator>Muthu Kumar, A. ; Ragavendran, V. ; Mayandi, J. ; Ramachandran, K. ; Jayakumar, K.</creator><creatorcontrib>Muthu Kumar, A. ; Ragavendran, V. ; Mayandi, J. ; Ramachandran, K. ; Jayakumar, K.</creatorcontrib><description>Polyvinylpyrrolidone (PVP)-assisted Bi 25 FeO 40 microcubes have been synthesized through hydrothermal technique and the effect of morphology on the electrochemical energy storage and energy conversion is investigated. The crystalline structure, phase, morphology, and quantum states of the samples are characterized and analyzed by X-ray diffraction, Raman Spectroscopy, Scanning Electron Microscopy and X-ray photoelectron spectroscopy, respectively. According to galvanostatic charge–discharge results, 7 wt% PVP in Bi 25 FeO 40 has a greater specific capacitance of 232 F g −1 at 4 A g −1 and a maximum capacitive retention of 84% after 1000 cycles. The synthesized samples are also utilized as a counter electrode (CE) for Dye-Sensitized Solar Cells (DSSCs) against the TiO 2 /N719/iodolyte redox pair. The Cyclic Voltammetry, Tafel polarization, and electrochemical impedance spectra of the Bi 25 FeO 40 CEs are described in depth, as are their electrocatalytic activity. It is discovered that Bi 25 FeO 40 is not only a viable supercapacitor candidate, but also an option for CE in DSSCs. The energy conversion and storage characteristics of Bi 25 FeO 40 are essential for the future development of photo-integrated supercapacitors.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-021-07471-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Dye-sensitized solar cells ; Dyes ; Electrode polarization ; Energy conversion ; Energy storage ; Materials Science ; Morphology ; Optical and Electronic Materials ; Photoelectrons ; Photovoltaic cells ; Polyvinylpyrrolidone ; Raman spectroscopy ; Spectrum analysis ; Supercapacitors ; Synthesis ; Titanium dioxide ; X ray photoelectron spectroscopy</subject><ispartof>Journal of materials science. Materials in electronics, 2022-04, Vol.33 (12), p.9512-9524</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c3055bee39468a2f511f6072717738d4ae51b0ad914ae4bc414e0eb8ce0de5a03</citedby><cites>FETCH-LOGICAL-c319t-c3055bee39468a2f511f6072717738d4ae51b0ad914ae4bc414e0eb8ce0de5a03</cites><orcidid>0000-0002-4048-4877</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-021-07471-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-021-07471-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Muthu Kumar, A.</creatorcontrib><creatorcontrib>Ragavendran, V.</creatorcontrib><creatorcontrib>Mayandi, J.</creatorcontrib><creatorcontrib>Ramachandran, K.</creatorcontrib><creatorcontrib>Jayakumar, K.</creatorcontrib><title>Influence of PVP on Bi25FeO40 microcubes for Supercapacitors and Dye-Sensitized Solar Cells applications</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Polyvinylpyrrolidone (PVP)-assisted Bi 25 FeO 40 microcubes have been synthesized through hydrothermal technique and the effect of morphology on the electrochemical energy storage and energy conversion is investigated. The crystalline structure, phase, morphology, and quantum states of the samples are characterized and analyzed by X-ray diffraction, Raman Spectroscopy, Scanning Electron Microscopy and X-ray photoelectron spectroscopy, respectively. According to galvanostatic charge–discharge results, 7 wt% PVP in Bi 25 FeO 40 has a greater specific capacitance of 232 F g −1 at 4 A g −1 and a maximum capacitive retention of 84% after 1000 cycles. The synthesized samples are also utilized as a counter electrode (CE) for Dye-Sensitized Solar Cells (DSSCs) against the TiO 2 /N719/iodolyte redox pair. The Cyclic Voltammetry, Tafel polarization, and electrochemical impedance spectra of the Bi 25 FeO 40 CEs are described in depth, as are their electrocatalytic activity. It is discovered that Bi 25 FeO 40 is not only a viable supercapacitor candidate, but also an option for CE in DSSCs. The energy conversion and storage characteristics of Bi 25 FeO 40 are essential for the future development of photo-integrated supercapacitors.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Dye-sensitized solar cells</subject><subject>Dyes</subject><subject>Electrode polarization</subject><subject>Energy conversion</subject><subject>Energy storage</subject><subject>Materials Science</subject><subject>Morphology</subject><subject>Optical and Electronic Materials</subject><subject>Photoelectrons</subject><subject>Photovoltaic cells</subject><subject>Polyvinylpyrrolidone</subject><subject>Raman spectroscopy</subject><subject>Spectrum analysis</subject><subject>Supercapacitors</subject><subject>Synthesis</subject><subject>Titanium dioxide</subject><subject>X ray photoelectron spectroscopy</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEFPwzAMhSMEEmPwBzhF4lxw0qRpjzAYTJq0SQPELUpTFzp1TUnaw_j1dBSJGxfbkt97lj9CLhlcMwB1ExikUkTAWQRKKBaJIzJhUsWRSPnbMZlAJlUkJOen5CyELQAkIk4n5GPRlHWPjUXqSrp-XVPX0LuKyzmuBNBdZb2zfY6Bls7TTd-it6Y1tuqcD9Q0Bb3fY7TBJlRd9YUF3bjaeDrDuh7WbVtX1nSVa8I5OSlNHfDit0_Jy_zhefYULVePi9ntMrIxy7qhgpQ5YpyJJDW8lIyVCSiumFJxWgiDkuVgiowNo8itYAIB89QiFCgNxFNyNea23n32GDq9db1vhpOaJyITPOVSDCo-qob3QvBY6tZXO-P3moE-ENUjUT0Q1T9E9cEUj6YwiJt39H_R_7i-AZDreMU</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Muthu Kumar, A.</creator><creator>Ragavendran, V.</creator><creator>Mayandi, J.</creator><creator>Ramachandran, K.</creator><creator>Jayakumar, K.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-4048-4877</orcidid></search><sort><creationdate>20220401</creationdate><title>Influence of PVP on Bi25FeO40 microcubes for Supercapacitors and Dye-Sensitized Solar Cells applications</title><author>Muthu Kumar, A. ; Ragavendran, V. ; Mayandi, J. ; Ramachandran, K. ; Jayakumar, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c3055bee39468a2f511f6072717738d4ae51b0ad914ae4bc414e0eb8ce0de5a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Dye-sensitized solar cells</topic><topic>Dyes</topic><topic>Electrode polarization</topic><topic>Energy conversion</topic><topic>Energy storage</topic><topic>Materials Science</topic><topic>Morphology</topic><topic>Optical and Electronic Materials</topic><topic>Photoelectrons</topic><topic>Photovoltaic cells</topic><topic>Polyvinylpyrrolidone</topic><topic>Raman spectroscopy</topic><topic>Spectrum analysis</topic><topic>Supercapacitors</topic><topic>Synthesis</topic><topic>Titanium dioxide</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muthu Kumar, A.</creatorcontrib><creatorcontrib>Ragavendran, V.</creatorcontrib><creatorcontrib>Mayandi, J.</creatorcontrib><creatorcontrib>Ramachandran, K.</creatorcontrib><creatorcontrib>Jayakumar, K.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muthu Kumar, A.</au><au>Ragavendran, V.</au><au>Mayandi, J.</au><au>Ramachandran, K.</au><au>Jayakumar, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of PVP on Bi25FeO40 microcubes for Supercapacitors and Dye-Sensitized Solar Cells applications</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>33</volume><issue>12</issue><spage>9512</spage><epage>9524</epage><pages>9512-9524</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Polyvinylpyrrolidone (PVP)-assisted Bi 25 FeO 40 microcubes have been synthesized through hydrothermal technique and the effect of morphology on the electrochemical energy storage and energy conversion is investigated. The crystalline structure, phase, morphology, and quantum states of the samples are characterized and analyzed by X-ray diffraction, Raman Spectroscopy, Scanning Electron Microscopy and X-ray photoelectron spectroscopy, respectively. According to galvanostatic charge–discharge results, 7 wt% PVP in Bi 25 FeO 40 has a greater specific capacitance of 232 F g −1 at 4 A g −1 and a maximum capacitive retention of 84% after 1000 cycles. The synthesized samples are also utilized as a counter electrode (CE) for Dye-Sensitized Solar Cells (DSSCs) against the TiO 2 /N719/iodolyte redox pair. The Cyclic Voltammetry, Tafel polarization, and electrochemical impedance spectra of the Bi 25 FeO 40 CEs are described in depth, as are their electrocatalytic activity. It is discovered that Bi 25 FeO 40 is not only a viable supercapacitor candidate, but also an option for CE in DSSCs. The energy conversion and storage characteristics of Bi 25 FeO 40 are essential for the future development of photo-integrated supercapacitors.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-021-07471-4</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4048-4877</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2022-04, Vol.33 (12), p.9512-9524
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2649428254
source Springer Journals
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Dye-sensitized solar cells
Dyes
Electrode polarization
Energy conversion
Energy storage
Materials Science
Morphology
Optical and Electronic Materials
Photoelectrons
Photovoltaic cells
Polyvinylpyrrolidone
Raman spectroscopy
Spectrum analysis
Supercapacitors
Synthesis
Titanium dioxide
X ray photoelectron spectroscopy
title Influence of PVP on Bi25FeO40 microcubes for Supercapacitors and Dye-Sensitized Solar Cells applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T19%3A22%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20PVP%20on%20Bi25FeO40%20microcubes%20for%20Supercapacitors%20and%20Dye-Sensitized%20Solar%20Cells%20applications&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Muthu%20Kumar,%20A.&rft.date=2022-04-01&rft.volume=33&rft.issue=12&rft.spage=9512&rft.epage=9524&rft.pages=9512-9524&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-021-07471-4&rft_dat=%3Cproquest_cross%3E2649428254%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2649428254&rft_id=info:pmid/&rfr_iscdi=true