Influence of PVP on Bi25FeO40 microcubes for Supercapacitors and Dye-Sensitized Solar Cells applications
Polyvinylpyrrolidone (PVP)-assisted Bi 25 FeO 40 microcubes have been synthesized through hydrothermal technique and the effect of morphology on the electrochemical energy storage and energy conversion is investigated. The crystalline structure, phase, morphology, and quantum states of the samples a...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2022-04, Vol.33 (12), p.9512-9524 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9524 |
---|---|
container_issue | 12 |
container_start_page | 9512 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 33 |
creator | Muthu Kumar, A. Ragavendran, V. Mayandi, J. Ramachandran, K. Jayakumar, K. |
description | Polyvinylpyrrolidone (PVP)-assisted Bi
25
FeO
40
microcubes have been synthesized through hydrothermal technique and the effect of morphology on the electrochemical energy storage and energy conversion is investigated. The crystalline structure, phase, morphology, and quantum states of the samples are characterized and analyzed by X-ray diffraction, Raman Spectroscopy, Scanning Electron Microscopy and X-ray photoelectron spectroscopy, respectively. According to galvanostatic charge–discharge results, 7 wt% PVP in Bi
25
FeO
40
has a greater specific capacitance of 232 F g
−1
at 4 A g
−1
and a maximum capacitive retention of 84% after 1000 cycles. The synthesized samples are also utilized as a counter electrode (CE) for Dye-Sensitized Solar Cells (DSSCs) against the TiO
2
/N719/iodolyte redox pair. The Cyclic Voltammetry, Tafel polarization, and electrochemical impedance spectra of the Bi
25
FeO
40
CEs are described in depth, as are their electrocatalytic activity. It is discovered that Bi
25
FeO
40
is not only a viable supercapacitor candidate, but also an option for CE in DSSCs. The energy conversion and storage characteristics of Bi
25
FeO
40
are essential for the future development of photo-integrated supercapacitors. |
doi_str_mv | 10.1007/s10854-021-07471-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2649428254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2649428254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c3055bee39468a2f511f6072717738d4ae51b0ad914ae4bc414e0eb8ce0de5a03</originalsourceid><addsrcrecordid>eNp9kEFPwzAMhSMEEmPwBzhF4lxw0qRpjzAYTJq0SQPELUpTFzp1TUnaw_j1dBSJGxfbkt97lj9CLhlcMwB1ExikUkTAWQRKKBaJIzJhUsWRSPnbMZlAJlUkJOen5CyELQAkIk4n5GPRlHWPjUXqSrp-XVPX0LuKyzmuBNBdZb2zfY6Bls7TTd-it6Y1tuqcD9Q0Bb3fY7TBJlRd9YUF3bjaeDrDuh7WbVtX1nSVa8I5OSlNHfDit0_Jy_zhefYULVePi9ntMrIxy7qhgpQ5YpyJJDW8lIyVCSiumFJxWgiDkuVgiowNo8itYAIB89QiFCgNxFNyNea23n32GDq9db1vhpOaJyITPOVSDCo-qob3QvBY6tZXO-P3moE-ENUjUT0Q1T9E9cEUj6YwiJt39H_R_7i-AZDreMU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649428254</pqid></control><display><type>article</type><title>Influence of PVP on Bi25FeO40 microcubes for Supercapacitors and Dye-Sensitized Solar Cells applications</title><source>Springer Journals</source><creator>Muthu Kumar, A. ; Ragavendran, V. ; Mayandi, J. ; Ramachandran, K. ; Jayakumar, K.</creator><creatorcontrib>Muthu Kumar, A. ; Ragavendran, V. ; Mayandi, J. ; Ramachandran, K. ; Jayakumar, K.</creatorcontrib><description>Polyvinylpyrrolidone (PVP)-assisted Bi
25
FeO
40
microcubes have been synthesized through hydrothermal technique and the effect of morphology on the electrochemical energy storage and energy conversion is investigated. The crystalline structure, phase, morphology, and quantum states of the samples are characterized and analyzed by X-ray diffraction, Raman Spectroscopy, Scanning Electron Microscopy and X-ray photoelectron spectroscopy, respectively. According to galvanostatic charge–discharge results, 7 wt% PVP in Bi
25
FeO
40
has a greater specific capacitance of 232 F g
−1
at 4 A g
−1
and a maximum capacitive retention of 84% after 1000 cycles. The synthesized samples are also utilized as a counter electrode (CE) for Dye-Sensitized Solar Cells (DSSCs) against the TiO
2
/N719/iodolyte redox pair. The Cyclic Voltammetry, Tafel polarization, and electrochemical impedance spectra of the Bi
25
FeO
40
CEs are described in depth, as are their electrocatalytic activity. It is discovered that Bi
25
FeO
40
is not only a viable supercapacitor candidate, but also an option for CE in DSSCs. The energy conversion and storage characteristics of Bi
25
FeO
40
are essential for the future development of photo-integrated supercapacitors.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-021-07471-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Dye-sensitized solar cells ; Dyes ; Electrode polarization ; Energy conversion ; Energy storage ; Materials Science ; Morphology ; Optical and Electronic Materials ; Photoelectrons ; Photovoltaic cells ; Polyvinylpyrrolidone ; Raman spectroscopy ; Spectrum analysis ; Supercapacitors ; Synthesis ; Titanium dioxide ; X ray photoelectron spectroscopy</subject><ispartof>Journal of materials science. Materials in electronics, 2022-04, Vol.33 (12), p.9512-9524</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c3055bee39468a2f511f6072717738d4ae51b0ad914ae4bc414e0eb8ce0de5a03</citedby><cites>FETCH-LOGICAL-c319t-c3055bee39468a2f511f6072717738d4ae51b0ad914ae4bc414e0eb8ce0de5a03</cites><orcidid>0000-0002-4048-4877</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-021-07471-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-021-07471-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Muthu Kumar, A.</creatorcontrib><creatorcontrib>Ragavendran, V.</creatorcontrib><creatorcontrib>Mayandi, J.</creatorcontrib><creatorcontrib>Ramachandran, K.</creatorcontrib><creatorcontrib>Jayakumar, K.</creatorcontrib><title>Influence of PVP on Bi25FeO40 microcubes for Supercapacitors and Dye-Sensitized Solar Cells applications</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Polyvinylpyrrolidone (PVP)-assisted Bi
25
FeO
40
microcubes have been synthesized through hydrothermal technique and the effect of morphology on the electrochemical energy storage and energy conversion is investigated. The crystalline structure, phase, morphology, and quantum states of the samples are characterized and analyzed by X-ray diffraction, Raman Spectroscopy, Scanning Electron Microscopy and X-ray photoelectron spectroscopy, respectively. According to galvanostatic charge–discharge results, 7 wt% PVP in Bi
25
FeO
40
has a greater specific capacitance of 232 F g
−1
at 4 A g
−1
and a maximum capacitive retention of 84% after 1000 cycles. The synthesized samples are also utilized as a counter electrode (CE) for Dye-Sensitized Solar Cells (DSSCs) against the TiO
2
/N719/iodolyte redox pair. The Cyclic Voltammetry, Tafel polarization, and electrochemical impedance spectra of the Bi
25
FeO
40
CEs are described in depth, as are their electrocatalytic activity. It is discovered that Bi
25
FeO
40
is not only a viable supercapacitor candidate, but also an option for CE in DSSCs. The energy conversion and storage characteristics of Bi
25
FeO
40
are essential for the future development of photo-integrated supercapacitors.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Dye-sensitized solar cells</subject><subject>Dyes</subject><subject>Electrode polarization</subject><subject>Energy conversion</subject><subject>Energy storage</subject><subject>Materials Science</subject><subject>Morphology</subject><subject>Optical and Electronic Materials</subject><subject>Photoelectrons</subject><subject>Photovoltaic cells</subject><subject>Polyvinylpyrrolidone</subject><subject>Raman spectroscopy</subject><subject>Spectrum analysis</subject><subject>Supercapacitors</subject><subject>Synthesis</subject><subject>Titanium dioxide</subject><subject>X ray photoelectron spectroscopy</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEFPwzAMhSMEEmPwBzhF4lxw0qRpjzAYTJq0SQPELUpTFzp1TUnaw_j1dBSJGxfbkt97lj9CLhlcMwB1ExikUkTAWQRKKBaJIzJhUsWRSPnbMZlAJlUkJOen5CyELQAkIk4n5GPRlHWPjUXqSrp-XVPX0LuKyzmuBNBdZb2zfY6Bls7TTd-it6Y1tuqcD9Q0Bb3fY7TBJlRd9YUF3bjaeDrDuh7WbVtX1nSVa8I5OSlNHfDit0_Jy_zhefYULVePi9ntMrIxy7qhgpQ5YpyJJDW8lIyVCSiumFJxWgiDkuVgiowNo8itYAIB89QiFCgNxFNyNea23n32GDq9db1vhpOaJyITPOVSDCo-qob3QvBY6tZXO-P3moE-ENUjUT0Q1T9E9cEUj6YwiJt39H_R_7i-AZDreMU</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Muthu Kumar, A.</creator><creator>Ragavendran, V.</creator><creator>Mayandi, J.</creator><creator>Ramachandran, K.</creator><creator>Jayakumar, K.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-4048-4877</orcidid></search><sort><creationdate>20220401</creationdate><title>Influence of PVP on Bi25FeO40 microcubes for Supercapacitors and Dye-Sensitized Solar Cells applications</title><author>Muthu Kumar, A. ; Ragavendran, V. ; Mayandi, J. ; Ramachandran, K. ; Jayakumar, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c3055bee39468a2f511f6072717738d4ae51b0ad914ae4bc414e0eb8ce0de5a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Dye-sensitized solar cells</topic><topic>Dyes</topic><topic>Electrode polarization</topic><topic>Energy conversion</topic><topic>Energy storage</topic><topic>Materials Science</topic><topic>Morphology</topic><topic>Optical and Electronic Materials</topic><topic>Photoelectrons</topic><topic>Photovoltaic cells</topic><topic>Polyvinylpyrrolidone</topic><topic>Raman spectroscopy</topic><topic>Spectrum analysis</topic><topic>Supercapacitors</topic><topic>Synthesis</topic><topic>Titanium dioxide</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muthu Kumar, A.</creatorcontrib><creatorcontrib>Ragavendran, V.</creatorcontrib><creatorcontrib>Mayandi, J.</creatorcontrib><creatorcontrib>Ramachandran, K.</creatorcontrib><creatorcontrib>Jayakumar, K.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muthu Kumar, A.</au><au>Ragavendran, V.</au><au>Mayandi, J.</au><au>Ramachandran, K.</au><au>Jayakumar, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of PVP on Bi25FeO40 microcubes for Supercapacitors and Dye-Sensitized Solar Cells applications</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>33</volume><issue>12</issue><spage>9512</spage><epage>9524</epage><pages>9512-9524</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Polyvinylpyrrolidone (PVP)-assisted Bi
25
FeO
40
microcubes have been synthesized through hydrothermal technique and the effect of morphology on the electrochemical energy storage and energy conversion is investigated. The crystalline structure, phase, morphology, and quantum states of the samples are characterized and analyzed by X-ray diffraction, Raman Spectroscopy, Scanning Electron Microscopy and X-ray photoelectron spectroscopy, respectively. According to galvanostatic charge–discharge results, 7 wt% PVP in Bi
25
FeO
40
has a greater specific capacitance of 232 F g
−1
at 4 A g
−1
and a maximum capacitive retention of 84% after 1000 cycles. The synthesized samples are also utilized as a counter electrode (CE) for Dye-Sensitized Solar Cells (DSSCs) against the TiO
2
/N719/iodolyte redox pair. The Cyclic Voltammetry, Tafel polarization, and electrochemical impedance spectra of the Bi
25
FeO
40
CEs are described in depth, as are their electrocatalytic activity. It is discovered that Bi
25
FeO
40
is not only a viable supercapacitor candidate, but also an option for CE in DSSCs. The energy conversion and storage characteristics of Bi
25
FeO
40
are essential for the future development of photo-integrated supercapacitors.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-021-07471-4</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4048-4877</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2022-04, Vol.33 (12), p.9512-9524 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2649428254 |
source | Springer Journals |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Dye-sensitized solar cells Dyes Electrode polarization Energy conversion Energy storage Materials Science Morphology Optical and Electronic Materials Photoelectrons Photovoltaic cells Polyvinylpyrrolidone Raman spectroscopy Spectrum analysis Supercapacitors Synthesis Titanium dioxide X ray photoelectron spectroscopy |
title | Influence of PVP on Bi25FeO40 microcubes for Supercapacitors and Dye-Sensitized Solar Cells applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T19%3A22%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20PVP%20on%20Bi25FeO40%20microcubes%20for%20Supercapacitors%20and%20Dye-Sensitized%20Solar%20Cells%20applications&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Muthu%20Kumar,%20A.&rft.date=2022-04-01&rft.volume=33&rft.issue=12&rft.spage=9512&rft.epage=9524&rft.pages=9512-9524&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-021-07471-4&rft_dat=%3Cproquest_cross%3E2649428254%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2649428254&rft_id=info:pmid/&rfr_iscdi=true |