Structure, morphology and I–V characteristics of thermally evaporated LaAlO3 nanostructured thin films

Nanostructured perovskite LaAlO 3 thin films with thickness of 50 nm, 100 nm, and 150 nm were prepared using thermal evaporation technique. The Fourier transform infrared spectroscopy study reveals the presence of La–Al–O bond. X-ray diffraction pattern confirms the perovskite LaAlO 3 structure. Sca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2022-04, Vol.33 (12), p.9085-9100
Hauptverfasser: Sugumaran, S., Divya, T. A., Sivaraman, R. K., Bellan, C. S., Sekhar, K. C., Jamlos, M. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9100
container_issue 12
container_start_page 9085
container_title Journal of materials science. Materials in electronics
container_volume 33
creator Sugumaran, S.
Divya, T. A.
Sivaraman, R. K.
Bellan, C. S.
Sekhar, K. C.
Jamlos, M. F.
description Nanostructured perovskite LaAlO 3 thin films with thickness of 50 nm, 100 nm, and 150 nm were prepared using thermal evaporation technique. The Fourier transform infrared spectroscopy study reveals the presence of La–Al–O bond. X-ray diffraction pattern confirms the perovskite LaAlO 3 structure. Scanning electron microscope images show the uniform furry structured rods, mixed rods/cubes and flower structured morphology. The presence of elements like La, Al, and O was confirmed from the energy-dispersive X-ray spectroscopy. Current–voltage ( I – V ) characteristics of Al/LaAlO 3 /Al sandwich capacitor structure show the existence of Poole–Frenkel type conduction mechanism with low leakage current (0.75 × 10 –7 to 1.5 × 10 –7 A/cm 2 ), low activation energy (2.59 to 0.21 eV) and decrease in potential barrier with an increase in the electric field. The acquired results indicated that the prepared LaAlO 3 nanothin film could be captivated with utilization as a dielectric layer in various electronic devices in the future.
doi_str_mv 10.1007/s10854-021-07139-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2649424817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2649424817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d986c106cb5bf0c38e3646682a0481eb0dbf9909fa49168a1f3f55c3ecab82593</originalsourceid><addsrcrecordid>eNp9kLtOwzAYRi0EEqXwAkyWWDH4lsQeK8SlUqUOXMRmOY7dpEriYKdI7cQ78IY8CYGA2Jj-5Xznlw4ApwRfEIyzy0iwSDjClCCcESbRbg9MSJIxxAV93gcTLJMM8YTSQ3AU4xpjnHImJqC878PG9Jtgz2HjQ1f62q-2ULcFnH-8vT9BU-qgTW9DFfvKROgd7EsbGl3XW2hfdeeD7m0BF3pWLxlsdevjr7IY0KqFrqqbeAwOnK6jPfm5U_B4c_1wdYcWy9v51WyBDCOyR4UUqSE4NXmSO2yYsCzlaSqoxlwQm-Mid1Ji6TSXJBWaOOaSxDBrdC5oItkUnI3eLviXjY29WvtNaIeXiqZccjposoGiI2WCjzFYp7pQNTpsFcHqq6gai6qhqPouqnbDiI2jOMDtyoY_9T-rT5S5fEE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649424817</pqid></control><display><type>article</type><title>Structure, morphology and I–V characteristics of thermally evaporated LaAlO3 nanostructured thin films</title><source>Springer Nature - Complete Springer Journals</source><creator>Sugumaran, S. ; Divya, T. A. ; Sivaraman, R. K. ; Bellan, C. S. ; Sekhar, K. C. ; Jamlos, M. F.</creator><creatorcontrib>Sugumaran, S. ; Divya, T. A. ; Sivaraman, R. K. ; Bellan, C. S. ; Sekhar, K. C. ; Jamlos, M. F.</creatorcontrib><description>Nanostructured perovskite LaAlO 3 thin films with thickness of 50 nm, 100 nm, and 150 nm were prepared using thermal evaporation technique. The Fourier transform infrared spectroscopy study reveals the presence of La–Al–O bond. X-ray diffraction pattern confirms the perovskite LaAlO 3 structure. Scanning electron microscope images show the uniform furry structured rods, mixed rods/cubes and flower structured morphology. The presence of elements like La, Al, and O was confirmed from the energy-dispersive X-ray spectroscopy. Current–voltage ( I – V ) characteristics of Al/LaAlO 3 /Al sandwich capacitor structure show the existence of Poole–Frenkel type conduction mechanism with low leakage current (0.75 × 10 –7 to 1.5 × 10 –7 A/cm 2 ), low activation energy (2.59 to 0.21 eV) and decrease in potential barrier with an increase in the electric field. The acquired results indicated that the prepared LaAlO 3 nanothin film could be captivated with utilization as a dielectric layer in various electronic devices in the future.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-021-07139-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Cubes ; Current voltage characteristics ; Diffraction patterns ; Electric fields ; Electronic devices ; Fourier transforms ; Infrared spectroscopy ; Leakage current ; Materials Science ; Morphology ; Nanostructure ; Optical and Electronic Materials ; Perovskites ; Potential barriers ; Rods ; Spectrum analysis ; Thickness ; Thin films</subject><ispartof>Journal of materials science. Materials in electronics, 2022-04, Vol.33 (12), p.9085-9100</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d986c106cb5bf0c38e3646682a0481eb0dbf9909fa49168a1f3f55c3ecab82593</citedby><cites>FETCH-LOGICAL-c319t-d986c106cb5bf0c38e3646682a0481eb0dbf9909fa49168a1f3f55c3ecab82593</cites><orcidid>0000-0002-9898-775X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-021-07139-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-021-07139-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Sugumaran, S.</creatorcontrib><creatorcontrib>Divya, T. A.</creatorcontrib><creatorcontrib>Sivaraman, R. K.</creatorcontrib><creatorcontrib>Bellan, C. S.</creatorcontrib><creatorcontrib>Sekhar, K. C.</creatorcontrib><creatorcontrib>Jamlos, M. F.</creatorcontrib><title>Structure, morphology and I–V characteristics of thermally evaporated LaAlO3 nanostructured thin films</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Nanostructured perovskite LaAlO 3 thin films with thickness of 50 nm, 100 nm, and 150 nm were prepared using thermal evaporation technique. The Fourier transform infrared spectroscopy study reveals the presence of La–Al–O bond. X-ray diffraction pattern confirms the perovskite LaAlO 3 structure. Scanning electron microscope images show the uniform furry structured rods, mixed rods/cubes and flower structured morphology. The presence of elements like La, Al, and O was confirmed from the energy-dispersive X-ray spectroscopy. Current–voltage ( I – V ) characteristics of Al/LaAlO 3 /Al sandwich capacitor structure show the existence of Poole–Frenkel type conduction mechanism with low leakage current (0.75 × 10 –7 to 1.5 × 10 –7 A/cm 2 ), low activation energy (2.59 to 0.21 eV) and decrease in potential barrier with an increase in the electric field. The acquired results indicated that the prepared LaAlO 3 nanothin film could be captivated with utilization as a dielectric layer in various electronic devices in the future.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Cubes</subject><subject>Current voltage characteristics</subject><subject>Diffraction patterns</subject><subject>Electric fields</subject><subject>Electronic devices</subject><subject>Fourier transforms</subject><subject>Infrared spectroscopy</subject><subject>Leakage current</subject><subject>Materials Science</subject><subject>Morphology</subject><subject>Nanostructure</subject><subject>Optical and Electronic Materials</subject><subject>Perovskites</subject><subject>Potential barriers</subject><subject>Rods</subject><subject>Spectrum analysis</subject><subject>Thickness</subject><subject>Thin films</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kLtOwzAYRi0EEqXwAkyWWDH4lsQeK8SlUqUOXMRmOY7dpEriYKdI7cQ78IY8CYGA2Jj-5Xznlw4ApwRfEIyzy0iwSDjClCCcESbRbg9MSJIxxAV93gcTLJMM8YTSQ3AU4xpjnHImJqC878PG9Jtgz2HjQ1f62q-2ULcFnH-8vT9BU-qgTW9DFfvKROgd7EsbGl3XW2hfdeeD7m0BF3pWLxlsdevjr7IY0KqFrqqbeAwOnK6jPfm5U_B4c_1wdYcWy9v51WyBDCOyR4UUqSE4NXmSO2yYsCzlaSqoxlwQm-Mid1Ji6TSXJBWaOOaSxDBrdC5oItkUnI3eLviXjY29WvtNaIeXiqZccjposoGiI2WCjzFYp7pQNTpsFcHqq6gai6qhqPouqnbDiI2jOMDtyoY_9T-rT5S5fEE</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Sugumaran, S.</creator><creator>Divya, T. A.</creator><creator>Sivaraman, R. K.</creator><creator>Bellan, C. S.</creator><creator>Sekhar, K. C.</creator><creator>Jamlos, M. F.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-9898-775X</orcidid></search><sort><creationdate>20220401</creationdate><title>Structure, morphology and I–V characteristics of thermally evaporated LaAlO3 nanostructured thin films</title><author>Sugumaran, S. ; Divya, T. A. ; Sivaraman, R. K. ; Bellan, C. S. ; Sekhar, K. C. ; Jamlos, M. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d986c106cb5bf0c38e3646682a0481eb0dbf9909fa49168a1f3f55c3ecab82593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Cubes</topic><topic>Current voltage characteristics</topic><topic>Diffraction patterns</topic><topic>Electric fields</topic><topic>Electronic devices</topic><topic>Fourier transforms</topic><topic>Infrared spectroscopy</topic><topic>Leakage current</topic><topic>Materials Science</topic><topic>Morphology</topic><topic>Nanostructure</topic><topic>Optical and Electronic Materials</topic><topic>Perovskites</topic><topic>Potential barriers</topic><topic>Rods</topic><topic>Spectrum analysis</topic><topic>Thickness</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sugumaran, S.</creatorcontrib><creatorcontrib>Divya, T. A.</creatorcontrib><creatorcontrib>Sivaraman, R. K.</creatorcontrib><creatorcontrib>Bellan, C. S.</creatorcontrib><creatorcontrib>Sekhar, K. C.</creatorcontrib><creatorcontrib>Jamlos, M. F.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sugumaran, S.</au><au>Divya, T. A.</au><au>Sivaraman, R. K.</au><au>Bellan, C. S.</au><au>Sekhar, K. C.</au><au>Jamlos, M. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure, morphology and I–V characteristics of thermally evaporated LaAlO3 nanostructured thin films</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>33</volume><issue>12</issue><spage>9085</spage><epage>9100</epage><pages>9085-9100</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Nanostructured perovskite LaAlO 3 thin films with thickness of 50 nm, 100 nm, and 150 nm were prepared using thermal evaporation technique. The Fourier transform infrared spectroscopy study reveals the presence of La–Al–O bond. X-ray diffraction pattern confirms the perovskite LaAlO 3 structure. Scanning electron microscope images show the uniform furry structured rods, mixed rods/cubes and flower structured morphology. The presence of elements like La, Al, and O was confirmed from the energy-dispersive X-ray spectroscopy. Current–voltage ( I – V ) characteristics of Al/LaAlO 3 /Al sandwich capacitor structure show the existence of Poole–Frenkel type conduction mechanism with low leakage current (0.75 × 10 –7 to 1.5 × 10 –7 A/cm 2 ), low activation energy (2.59 to 0.21 eV) and decrease in potential barrier with an increase in the electric field. The acquired results indicated that the prepared LaAlO 3 nanothin film could be captivated with utilization as a dielectric layer in various electronic devices in the future.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-021-07139-z</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9898-775X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2022-04, Vol.33 (12), p.9085-9100
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2649424817
source Springer Nature - Complete Springer Journals
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Cubes
Current voltage characteristics
Diffraction patterns
Electric fields
Electronic devices
Fourier transforms
Infrared spectroscopy
Leakage current
Materials Science
Morphology
Nanostructure
Optical and Electronic Materials
Perovskites
Potential barriers
Rods
Spectrum analysis
Thickness
Thin films
title Structure, morphology and I–V characteristics of thermally evaporated LaAlO3 nanostructured thin films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A14%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure,%20morphology%20and%20I%E2%80%93V%20characteristics%20of%20thermally%20evaporated%20LaAlO3%20nanostructured%20thin%20films&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Sugumaran,%20S.&rft.date=2022-04-01&rft.volume=33&rft.issue=12&rft.spage=9085&rft.epage=9100&rft.pages=9085-9100&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-021-07139-z&rft_dat=%3Cproquest_cross%3E2649424817%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2649424817&rft_id=info:pmid/&rfr_iscdi=true