Structure, morphology and I–V characteristics of thermally evaporated LaAlO3 nanostructured thin films
Nanostructured perovskite LaAlO 3 thin films with thickness of 50 nm, 100 nm, and 150 nm were prepared using thermal evaporation technique. The Fourier transform infrared spectroscopy study reveals the presence of La–Al–O bond. X-ray diffraction pattern confirms the perovskite LaAlO 3 structure. Sca...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2022-04, Vol.33 (12), p.9085-9100 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9100 |
---|---|
container_issue | 12 |
container_start_page | 9085 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 33 |
creator | Sugumaran, S. Divya, T. A. Sivaraman, R. K. Bellan, C. S. Sekhar, K. C. Jamlos, M. F. |
description | Nanostructured perovskite LaAlO
3
thin films with thickness of 50 nm, 100 nm, and 150 nm were prepared using thermal evaporation technique. The Fourier transform infrared spectroscopy study reveals the presence of La–Al–O bond. X-ray diffraction pattern confirms the perovskite LaAlO
3
structure. Scanning electron microscope images show the uniform furry structured rods, mixed rods/cubes and flower structured morphology. The presence of elements like La, Al, and O was confirmed from the energy-dispersive X-ray spectroscopy. Current–voltage (
I
–
V
) characteristics of Al/LaAlO
3
/Al sandwich capacitor structure show the existence of Poole–Frenkel type conduction mechanism with low leakage current (0.75 × 10
–7
to 1.5 × 10
–7
A/cm
2
), low activation energy (2.59 to 0.21 eV) and decrease in potential barrier with an increase in the electric field. The acquired results indicated that the prepared LaAlO
3
nanothin film could be captivated with utilization as a dielectric layer in various electronic devices in the future. |
doi_str_mv | 10.1007/s10854-021-07139-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2649424817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2649424817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d986c106cb5bf0c38e3646682a0481eb0dbf9909fa49168a1f3f55c3ecab82593</originalsourceid><addsrcrecordid>eNp9kLtOwzAYRi0EEqXwAkyWWDH4lsQeK8SlUqUOXMRmOY7dpEriYKdI7cQ78IY8CYGA2Jj-5Xznlw4ApwRfEIyzy0iwSDjClCCcESbRbg9MSJIxxAV93gcTLJMM8YTSQ3AU4xpjnHImJqC878PG9Jtgz2HjQ1f62q-2ULcFnH-8vT9BU-qgTW9DFfvKROgd7EsbGl3XW2hfdeeD7m0BF3pWLxlsdevjr7IY0KqFrqqbeAwOnK6jPfm5U_B4c_1wdYcWy9v51WyBDCOyR4UUqSE4NXmSO2yYsCzlaSqoxlwQm-Mid1Ji6TSXJBWaOOaSxDBrdC5oItkUnI3eLviXjY29WvtNaIeXiqZccjposoGiI2WCjzFYp7pQNTpsFcHqq6gai6qhqPouqnbDiI2jOMDtyoY_9T-rT5S5fEE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649424817</pqid></control><display><type>article</type><title>Structure, morphology and I–V characteristics of thermally evaporated LaAlO3 nanostructured thin films</title><source>Springer Nature - Complete Springer Journals</source><creator>Sugumaran, S. ; Divya, T. A. ; Sivaraman, R. K. ; Bellan, C. S. ; Sekhar, K. C. ; Jamlos, M. F.</creator><creatorcontrib>Sugumaran, S. ; Divya, T. A. ; Sivaraman, R. K. ; Bellan, C. S. ; Sekhar, K. C. ; Jamlos, M. F.</creatorcontrib><description>Nanostructured perovskite LaAlO
3
thin films with thickness of 50 nm, 100 nm, and 150 nm were prepared using thermal evaporation technique. The Fourier transform infrared spectroscopy study reveals the presence of La–Al–O bond. X-ray diffraction pattern confirms the perovskite LaAlO
3
structure. Scanning electron microscope images show the uniform furry structured rods, mixed rods/cubes and flower structured morphology. The presence of elements like La, Al, and O was confirmed from the energy-dispersive X-ray spectroscopy. Current–voltage (
I
–
V
) characteristics of Al/LaAlO
3
/Al sandwich capacitor structure show the existence of Poole–Frenkel type conduction mechanism with low leakage current (0.75 × 10
–7
to 1.5 × 10
–7
A/cm
2
), low activation energy (2.59 to 0.21 eV) and decrease in potential barrier with an increase in the electric field. The acquired results indicated that the prepared LaAlO
3
nanothin film could be captivated with utilization as a dielectric layer in various electronic devices in the future.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-021-07139-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Cubes ; Current voltage characteristics ; Diffraction patterns ; Electric fields ; Electronic devices ; Fourier transforms ; Infrared spectroscopy ; Leakage current ; Materials Science ; Morphology ; Nanostructure ; Optical and Electronic Materials ; Perovskites ; Potential barriers ; Rods ; Spectrum analysis ; Thickness ; Thin films</subject><ispartof>Journal of materials science. Materials in electronics, 2022-04, Vol.33 (12), p.9085-9100</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d986c106cb5bf0c38e3646682a0481eb0dbf9909fa49168a1f3f55c3ecab82593</citedby><cites>FETCH-LOGICAL-c319t-d986c106cb5bf0c38e3646682a0481eb0dbf9909fa49168a1f3f55c3ecab82593</cites><orcidid>0000-0002-9898-775X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-021-07139-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-021-07139-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Sugumaran, S.</creatorcontrib><creatorcontrib>Divya, T. A.</creatorcontrib><creatorcontrib>Sivaraman, R. K.</creatorcontrib><creatorcontrib>Bellan, C. S.</creatorcontrib><creatorcontrib>Sekhar, K. C.</creatorcontrib><creatorcontrib>Jamlos, M. F.</creatorcontrib><title>Structure, morphology and I–V characteristics of thermally evaporated LaAlO3 nanostructured thin films</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Nanostructured perovskite LaAlO
3
thin films with thickness of 50 nm, 100 nm, and 150 nm were prepared using thermal evaporation technique. The Fourier transform infrared spectroscopy study reveals the presence of La–Al–O bond. X-ray diffraction pattern confirms the perovskite LaAlO
3
structure. Scanning electron microscope images show the uniform furry structured rods, mixed rods/cubes and flower structured morphology. The presence of elements like La, Al, and O was confirmed from the energy-dispersive X-ray spectroscopy. Current–voltage (
I
–
V
) characteristics of Al/LaAlO
3
/Al sandwich capacitor structure show the existence of Poole–Frenkel type conduction mechanism with low leakage current (0.75 × 10
–7
to 1.5 × 10
–7
A/cm
2
), low activation energy (2.59 to 0.21 eV) and decrease in potential barrier with an increase in the electric field. The acquired results indicated that the prepared LaAlO
3
nanothin film could be captivated with utilization as a dielectric layer in various electronic devices in the future.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Cubes</subject><subject>Current voltage characteristics</subject><subject>Diffraction patterns</subject><subject>Electric fields</subject><subject>Electronic devices</subject><subject>Fourier transforms</subject><subject>Infrared spectroscopy</subject><subject>Leakage current</subject><subject>Materials Science</subject><subject>Morphology</subject><subject>Nanostructure</subject><subject>Optical and Electronic Materials</subject><subject>Perovskites</subject><subject>Potential barriers</subject><subject>Rods</subject><subject>Spectrum analysis</subject><subject>Thickness</subject><subject>Thin films</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kLtOwzAYRi0EEqXwAkyWWDH4lsQeK8SlUqUOXMRmOY7dpEriYKdI7cQ78IY8CYGA2Jj-5Xznlw4ApwRfEIyzy0iwSDjClCCcESbRbg9MSJIxxAV93gcTLJMM8YTSQ3AU4xpjnHImJqC878PG9Jtgz2HjQ1f62q-2ULcFnH-8vT9BU-qgTW9DFfvKROgd7EsbGl3XW2hfdeeD7m0BF3pWLxlsdevjr7IY0KqFrqqbeAwOnK6jPfm5U_B4c_1wdYcWy9v51WyBDCOyR4UUqSE4NXmSO2yYsCzlaSqoxlwQm-Mid1Ji6TSXJBWaOOaSxDBrdC5oItkUnI3eLviXjY29WvtNaIeXiqZccjposoGiI2WCjzFYp7pQNTpsFcHqq6gai6qhqPouqnbDiI2jOMDtyoY_9T-rT5S5fEE</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Sugumaran, S.</creator><creator>Divya, T. A.</creator><creator>Sivaraman, R. K.</creator><creator>Bellan, C. S.</creator><creator>Sekhar, K. C.</creator><creator>Jamlos, M. F.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-9898-775X</orcidid></search><sort><creationdate>20220401</creationdate><title>Structure, morphology and I–V characteristics of thermally evaporated LaAlO3 nanostructured thin films</title><author>Sugumaran, S. ; Divya, T. A. ; Sivaraman, R. K. ; Bellan, C. S. ; Sekhar, K. C. ; Jamlos, M. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d986c106cb5bf0c38e3646682a0481eb0dbf9909fa49168a1f3f55c3ecab82593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Cubes</topic><topic>Current voltage characteristics</topic><topic>Diffraction patterns</topic><topic>Electric fields</topic><topic>Electronic devices</topic><topic>Fourier transforms</topic><topic>Infrared spectroscopy</topic><topic>Leakage current</topic><topic>Materials Science</topic><topic>Morphology</topic><topic>Nanostructure</topic><topic>Optical and Electronic Materials</topic><topic>Perovskites</topic><topic>Potential barriers</topic><topic>Rods</topic><topic>Spectrum analysis</topic><topic>Thickness</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sugumaran, S.</creatorcontrib><creatorcontrib>Divya, T. A.</creatorcontrib><creatorcontrib>Sivaraman, R. K.</creatorcontrib><creatorcontrib>Bellan, C. S.</creatorcontrib><creatorcontrib>Sekhar, K. C.</creatorcontrib><creatorcontrib>Jamlos, M. F.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sugumaran, S.</au><au>Divya, T. A.</au><au>Sivaraman, R. K.</au><au>Bellan, C. S.</au><au>Sekhar, K. C.</au><au>Jamlos, M. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure, morphology and I–V characteristics of thermally evaporated LaAlO3 nanostructured thin films</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>33</volume><issue>12</issue><spage>9085</spage><epage>9100</epage><pages>9085-9100</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Nanostructured perovskite LaAlO
3
thin films with thickness of 50 nm, 100 nm, and 150 nm were prepared using thermal evaporation technique. The Fourier transform infrared spectroscopy study reveals the presence of La–Al–O bond. X-ray diffraction pattern confirms the perovskite LaAlO
3
structure. Scanning electron microscope images show the uniform furry structured rods, mixed rods/cubes and flower structured morphology. The presence of elements like La, Al, and O was confirmed from the energy-dispersive X-ray spectroscopy. Current–voltage (
I
–
V
) characteristics of Al/LaAlO
3
/Al sandwich capacitor structure show the existence of Poole–Frenkel type conduction mechanism with low leakage current (0.75 × 10
–7
to 1.5 × 10
–7
A/cm
2
), low activation energy (2.59 to 0.21 eV) and decrease in potential barrier with an increase in the electric field. The acquired results indicated that the prepared LaAlO
3
nanothin film could be captivated with utilization as a dielectric layer in various electronic devices in the future.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-021-07139-z</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9898-775X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2022-04, Vol.33 (12), p.9085-9100 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2649424817 |
source | Springer Nature - Complete Springer Journals |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Cubes Current voltage characteristics Diffraction patterns Electric fields Electronic devices Fourier transforms Infrared spectroscopy Leakage current Materials Science Morphology Nanostructure Optical and Electronic Materials Perovskites Potential barriers Rods Spectrum analysis Thickness Thin films |
title | Structure, morphology and I–V characteristics of thermally evaporated LaAlO3 nanostructured thin films |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A14%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure,%20morphology%20and%20I%E2%80%93V%20characteristics%20of%20thermally%20evaporated%20LaAlO3%20nanostructured%20thin%20films&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Sugumaran,%20S.&rft.date=2022-04-01&rft.volume=33&rft.issue=12&rft.spage=9085&rft.epage=9100&rft.pages=9085-9100&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-021-07139-z&rft_dat=%3Cproquest_cross%3E2649424817%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2649424817&rft_id=info:pmid/&rfr_iscdi=true |