Comparing Conventional and Machine-Learning Approaches to Risk Assessment in Domestic Abuse Cases

We compare predictions from a conventional protocol-based approach to risk assessment with those based on a machine-learning approach. We first show that the conventional predictions are less accurate than, and have similar rates of negative prediction error as, a simple Bayes classifier that makes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NBER Working Paper Series 2020-12
Hauptverfasser: Gupta, Sean, Ivandic, Ria, Grogger, Jeffrey, Kirchmaier, Tom
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title NBER Working Paper Series
container_volume
creator Gupta, Sean
Ivandic, Ria
Grogger, Jeffrey
Kirchmaier, Tom
description We compare predictions from a conventional protocol-based approach to risk assessment with those based on a machine-learning approach. We first show that the conventional predictions are less accurate than, and have similar rates of negative prediction error as, a simple Bayes classifier that makes use only of the base failure rate. Machine learning algorithms based on the underlying risk assessment questionnaire do better under the assumption that negative prediction errors are more costly than positive prediction errors. Machine learning models based on two-year criminal histories do even better. Indeed, adding the protocol-based features to the criminal histories adds little to the predictive adequacy of the model. We suggest using the predictions based on criminal histories to prioritize incoming calls for service, and devising a more sensitive instrument to distinguish true from false positives that result from this initial screening.
doi_str_mv 10.3386/w28293
format Article
fullrecord <record><control><sourceid>proquest_econi</sourceid><recordid>TN_cdi_proquest_journals_2649416204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><nber_id>w28293</nber_id><sourcerecordid>2649416204</sourcerecordid><originalsourceid>FETCH-LOGICAL-e724-173e13aef1f8bf322e7cf5da6579b2c787229280f4d652f8ec123d2f96a334203</originalsourceid><addsrcrecordid>eNo9kE9PwzAMxXMAiTHgA3CKxLmQOFmTHqvyVypCQrtXaetAxpqUZgPx7clUxMmW389PzybkgrNrIXR-8w0aCnFEFkwXOkutOiGnMW4YA60ZXxBThWE0k_NvtAr-C_3OBW-21PiePpvu3XnMajSTPxDlOE4hDTHSXaCvLn7QMkaMcUh71Hl6GwaMO9fRst1HpJVJ4hk5tmYb8fyvLsn6_m5dPWb1y8NTVdYZKpAZVwK5MGi51a0VAKg6u-pNvlJFC53SCqAAzazs8xVYjR0H0YMtciOEBCaW5Gq2TRE_9ylFswn7KZ0SG8hlIXkOTCaKzhR2wbvYjJMbzPTTcCUTwSU_GF3OiG9x-gfmR4pfUBZlnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649416204</pqid></control><display><type>article</type><title>Comparing Conventional and Machine-Learning Approaches to Risk Assessment in Domestic Abuse Cases</title><source>National Bureau of Economic Research Publications</source><source>Alma/SFX Local Collection</source><creator>Gupta, Sean ; Ivandic, Ria ; Grogger, Jeffrey ; Kirchmaier, Tom</creator><creatorcontrib>Gupta, Sean ; Ivandic, Ria ; Grogger, Jeffrey ; Kirchmaier, Tom</creatorcontrib><description>We compare predictions from a conventional protocol-based approach to risk assessment with those based on a machine-learning approach. We first show that the conventional predictions are less accurate than, and have similar rates of negative prediction error as, a simple Bayes classifier that makes use only of the base failure rate. Machine learning algorithms based on the underlying risk assessment questionnaire do better under the assumption that negative prediction errors are more costly than positive prediction errors. Machine learning models based on two-year criminal histories do even better. Indeed, adding the protocol-based features to the criminal histories adds little to the predictive adequacy of the model. We suggest using the predictions based on criminal histories to prioritize incoming calls for service, and devising a more sensitive instrument to distinguish true from false positives that result from this initial screening.</description><identifier>ISSN: 0898-2937</identifier><identifier>DOI: 10.3386/w28293</identifier><language>eng</language><publisher>Cambridge, Mass: National Bureau of Economic Research</publisher><subject>Children and Families ; Economic theory ; Labor Studies ; Law and Economics ; Machine learning ; Risk assessment</subject><ispartof>NBER Working Paper Series, 2020-12</ispartof><rights>Copyright National Bureau of Economic Research, Inc. Jan 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781,27907</link.rule.ids></links><search><creatorcontrib>Gupta, Sean</creatorcontrib><creatorcontrib>Ivandic, Ria</creatorcontrib><creatorcontrib>Grogger, Jeffrey</creatorcontrib><creatorcontrib>Kirchmaier, Tom</creatorcontrib><title>Comparing Conventional and Machine-Learning Approaches to Risk Assessment in Domestic Abuse Cases</title><title>NBER Working Paper Series</title><description>We compare predictions from a conventional protocol-based approach to risk assessment with those based on a machine-learning approach. We first show that the conventional predictions are less accurate than, and have similar rates of negative prediction error as, a simple Bayes classifier that makes use only of the base failure rate. Machine learning algorithms based on the underlying risk assessment questionnaire do better under the assumption that negative prediction errors are more costly than positive prediction errors. Machine learning models based on two-year criminal histories do even better. Indeed, adding the protocol-based features to the criminal histories adds little to the predictive adequacy of the model. We suggest using the predictions based on criminal histories to prioritize incoming calls for service, and devising a more sensitive instrument to distinguish true from false positives that result from this initial screening.</description><subject>Children and Families</subject><subject>Economic theory</subject><subject>Labor Studies</subject><subject>Law and Economics</subject><subject>Machine learning</subject><subject>Risk assessment</subject><issn>0898-2937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>NBR</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNo9kE9PwzAMxXMAiTHgA3CKxLmQOFmTHqvyVypCQrtXaetAxpqUZgPx7clUxMmW389PzybkgrNrIXR-8w0aCnFEFkwXOkutOiGnMW4YA60ZXxBThWE0k_NvtAr-C_3OBW-21PiePpvu3XnMajSTPxDlOE4hDTHSXaCvLn7QMkaMcUh71Hl6GwaMO9fRst1HpJVJ4hk5tmYb8fyvLsn6_m5dPWb1y8NTVdYZKpAZVwK5MGi51a0VAKg6u-pNvlJFC53SCqAAzazs8xVYjR0H0YMtciOEBCaW5Gq2TRE_9ylFswn7KZ0SG8hlIXkOTCaKzhR2wbvYjJMbzPTTcCUTwSU_GF3OiG9x-gfmR4pfUBZlnw</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Gupta, Sean</creator><creator>Ivandic, Ria</creator><creator>Grogger, Jeffrey</creator><creator>Kirchmaier, Tom</creator><general>National Bureau of Economic Research</general><general>National Bureau of Economic Research, Inc</general><scope>CZO</scope><scope>MPB</scope><scope>NBR</scope><scope>XD6</scope><scope>OQ6</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20201201</creationdate><title>Comparing Conventional and Machine-Learning Approaches to Risk Assessment in Domestic Abuse Cases</title><author>Gupta, Sean ; Ivandic, Ria ; Grogger, Jeffrey ; Kirchmaier, Tom</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e724-173e13aef1f8bf322e7cf5da6579b2c787229280f4d652f8ec123d2f96a334203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Children and Families</topic><topic>Economic theory</topic><topic>Labor Studies</topic><topic>Law and Economics</topic><topic>Machine learning</topic><topic>Risk assessment</topic><toplevel>online_resources</toplevel><creatorcontrib>Gupta, Sean</creatorcontrib><creatorcontrib>Ivandic, Ria</creatorcontrib><creatorcontrib>Grogger, Jeffrey</creatorcontrib><creatorcontrib>Kirchmaier, Tom</creatorcontrib><collection>NBER Working Papers</collection><collection>NBER</collection><collection>National Bureau of Economic Research Publications</collection><collection>NBER Technical Working Papers Archive</collection><collection>ECONIS</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, Sean</au><au>Ivandic, Ria</au><au>Grogger, Jeffrey</au><au>Kirchmaier, Tom</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Comparing Conventional and Machine-Learning Approaches to Risk Assessment in Domestic Abuse Cases</atitle><jtitle>NBER Working Paper Series</jtitle><date>2020-12-01</date><risdate>2020</risdate><issn>0898-2937</issn><abstract>We compare predictions from a conventional protocol-based approach to risk assessment with those based on a machine-learning approach. We first show that the conventional predictions are less accurate than, and have similar rates of negative prediction error as, a simple Bayes classifier that makes use only of the base failure rate. Machine learning algorithms based on the underlying risk assessment questionnaire do better under the assumption that negative prediction errors are more costly than positive prediction errors. Machine learning models based on two-year criminal histories do even better. Indeed, adding the protocol-based features to the criminal histories adds little to the predictive adequacy of the model. We suggest using the predictions based on criminal histories to prioritize incoming calls for service, and devising a more sensitive instrument to distinguish true from false positives that result from this initial screening.</abstract><cop>Cambridge, Mass</cop><pub>National Bureau of Economic Research</pub><doi>10.3386/w28293</doi></addata></record>
fulltext fulltext
identifier ISSN: 0898-2937
ispartof NBER Working Paper Series, 2020-12
issn 0898-2937
language eng
recordid cdi_proquest_journals_2649416204
source National Bureau of Economic Research Publications; Alma/SFX Local Collection
subjects Children and Families
Economic theory
Labor Studies
Law and Economics
Machine learning
Risk assessment
title Comparing Conventional and Machine-Learning Approaches to Risk Assessment in Domestic Abuse Cases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A54%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_econi&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Comparing%20Conventional%20and%20Machine-Learning%20Approaches%20to%20Risk%20Assessment%20in%20Domestic%20Abuse%20Cases&rft.jtitle=NBER%20Working%20Paper%20Series&rft.au=Gupta,%20Sean&rft.date=2020-12-01&rft.issn=0898-2937&rft_id=info:doi/10.3386/w28293&rft_dat=%3Cproquest_econi%3E2649416204%3C/proquest_econi%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2649416204&rft_id=info:pmid/&rft_nber_id=w28293&rfr_iscdi=true