Robust Algebraic Curve Intersections with Tolerance Control
In this paper, a robust and efficient algorithm is proposed to calculate the intersection points of two planar algebraic curves with guaranteed tolerance. The proposed method takes advantage of the fundamental methods in the fields of CAGD, solution verification for nonlinear equations and symbolic...
Gespeichert in:
Veröffentlicht in: | Computer aided design 2022-06, Vol.147, p.103236, Article 103236 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 103236 |
container_title | Computer aided design |
container_volume | 147 |
creator | Shao, Wenbing Chen, Falai Liu, Xuefeng |
description | In this paper, a robust and efficient algorithm is proposed to calculate the intersection points of two planar algebraic curves with guaranteed tolerance. The proposed method takes advantage of the fundamental methods in the fields of CAGD, solution verification for nonlinear equations and symbolic computation. Specifically, the subdivision method is applied to quickly exclude the regions without intersection points, and then Krawczyk’s method is used to find a sharp and guaranteed bound for the intersection points. For ill-conditional cases, Sturm’s theorem is applied to determine if there are any intersection points in undetermined regions. We present examples to demonstrate the robustness and efficiency of our algorithm, and comparisons with classic methods and a state-of-the-art method are also provided. The method can be easily adapted to computing the intersection points of two parametric curves.
•An algorithm is proposed to calculate the intersection of two algebraic curves.•Subdivision method and Krawczyk’s method are combined to find the solutions.•Symbolic method is applied to address the ill conditional case.•The algorithm is robust and efficient with tolerance control. |
doi_str_mv | 10.1016/j.cad.2022.103236 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2649299545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001044852200029X</els_id><sourcerecordid>2649299545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-3549f551bed9e21b33117d4cf92072027c6e929ab5f7741b430e5425c47020713</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AHcF1x3zbBpmNRQfAwOCjOvQpreaUpsxSUf892aoa1eXC-e795yD0C3BK4JJcd-vTN2uKKY07Yyy4gwtSClVTotSnKMFxgTnnJfiEl2F0GOMKWFqgdavrplCzDbDOzS-tiarJn-EbDtG8AFMtG4M2beNH9neDeDr0UBWuTF6N1yji64eAtz8zSV6e3zYV8_57uVpW212uWFUxJwJrjohSAOtAkoaxgiRLTedolgmx9IUoKiqG9FJyUnDGQbBqTBc4qQgbInu5rsH774mCFH3bvJjeqlpwROqBBdJRWaV8S4ED50-ePtZ-x9NsD51pHudOtKnjvTcUWLWMwPJ_tGC18FYSBFb61N23Tr7D_0LMWtsQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649299545</pqid></control><display><type>article</type><title>Robust Algebraic Curve Intersections with Tolerance Control</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Shao, Wenbing ; Chen, Falai ; Liu, Xuefeng</creator><creatorcontrib>Shao, Wenbing ; Chen, Falai ; Liu, Xuefeng</creatorcontrib><description>In this paper, a robust and efficient algorithm is proposed to calculate the intersection points of two planar algebraic curves with guaranteed tolerance. The proposed method takes advantage of the fundamental methods in the fields of CAGD, solution verification for nonlinear equations and symbolic computation. Specifically, the subdivision method is applied to quickly exclude the regions without intersection points, and then Krawczyk’s method is used to find a sharp and guaranteed bound for the intersection points. For ill-conditional cases, Sturm’s theorem is applied to determine if there are any intersection points in undetermined regions. We present examples to demonstrate the robustness and efficiency of our algorithm, and comparisons with classic methods and a state-of-the-art method are also provided. The method can be easily adapted to computing the intersection points of two parametric curves.
•An algorithm is proposed to calculate the intersection of two algebraic curves.•Subdivision method and Krawczyk’s method are combined to find the solutions.•Symbolic method is applied to address the ill conditional case.•The algorithm is robust and efficient with tolerance control.</description><identifier>ISSN: 0010-4485</identifier><identifier>EISSN: 1879-2685</identifier><identifier>DOI: 10.1016/j.cad.2022.103236</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Algebra ; Algebraic curve ; Algorithms ; Curve/curve intersection ; Intersections ; Krawczyk’s method ; Nonlinear equations ; Resultant ; Robustness ; Sturm’s theorem ; Subdivision method</subject><ispartof>Computer aided design, 2022-06, Vol.147, p.103236, Article 103236</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-3549f551bed9e21b33117d4cf92072027c6e929ab5f7741b430e5425c47020713</citedby><cites>FETCH-LOGICAL-c325t-3549f551bed9e21b33117d4cf92072027c6e929ab5f7741b430e5425c47020713</cites><orcidid>0000-0003-4546-1620 ; 0000-0003-3105-600X ; 0000-0002-9898-5922</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cad.2022.103236$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Shao, Wenbing</creatorcontrib><creatorcontrib>Chen, Falai</creatorcontrib><creatorcontrib>Liu, Xuefeng</creatorcontrib><title>Robust Algebraic Curve Intersections with Tolerance Control</title><title>Computer aided design</title><description>In this paper, a robust and efficient algorithm is proposed to calculate the intersection points of two planar algebraic curves with guaranteed tolerance. The proposed method takes advantage of the fundamental methods in the fields of CAGD, solution verification for nonlinear equations and symbolic computation. Specifically, the subdivision method is applied to quickly exclude the regions without intersection points, and then Krawczyk’s method is used to find a sharp and guaranteed bound for the intersection points. For ill-conditional cases, Sturm’s theorem is applied to determine if there are any intersection points in undetermined regions. We present examples to demonstrate the robustness and efficiency of our algorithm, and comparisons with classic methods and a state-of-the-art method are also provided. The method can be easily adapted to computing the intersection points of two parametric curves.
•An algorithm is proposed to calculate the intersection of two algebraic curves.•Subdivision method and Krawczyk’s method are combined to find the solutions.•Symbolic method is applied to address the ill conditional case.•The algorithm is robust and efficient with tolerance control.</description><subject>Algebra</subject><subject>Algebraic curve</subject><subject>Algorithms</subject><subject>Curve/curve intersection</subject><subject>Intersections</subject><subject>Krawczyk’s method</subject><subject>Nonlinear equations</subject><subject>Resultant</subject><subject>Robustness</subject><subject>Sturm’s theorem</subject><subject>Subdivision method</subject><issn>0010-4485</issn><issn>1879-2685</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AHcF1x3zbBpmNRQfAwOCjOvQpreaUpsxSUf892aoa1eXC-e795yD0C3BK4JJcd-vTN2uKKY07Yyy4gwtSClVTotSnKMFxgTnnJfiEl2F0GOMKWFqgdavrplCzDbDOzS-tiarJn-EbDtG8AFMtG4M2beNH9neDeDr0UBWuTF6N1yji64eAtz8zSV6e3zYV8_57uVpW212uWFUxJwJrjohSAOtAkoaxgiRLTedolgmx9IUoKiqG9FJyUnDGQbBqTBc4qQgbInu5rsH774mCFH3bvJjeqlpwROqBBdJRWaV8S4ED50-ePtZ-x9NsD51pHudOtKnjvTcUWLWMwPJ_tGC18FYSBFb61N23Tr7D_0LMWtsQQ</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Shao, Wenbing</creator><creator>Chen, Falai</creator><creator>Liu, Xuefeng</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4546-1620</orcidid><orcidid>https://orcid.org/0000-0003-3105-600X</orcidid><orcidid>https://orcid.org/0000-0002-9898-5922</orcidid></search><sort><creationdate>202206</creationdate><title>Robust Algebraic Curve Intersections with Tolerance Control</title><author>Shao, Wenbing ; Chen, Falai ; Liu, Xuefeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-3549f551bed9e21b33117d4cf92072027c6e929ab5f7741b430e5425c47020713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Algebraic curve</topic><topic>Algorithms</topic><topic>Curve/curve intersection</topic><topic>Intersections</topic><topic>Krawczyk’s method</topic><topic>Nonlinear equations</topic><topic>Resultant</topic><topic>Robustness</topic><topic>Sturm’s theorem</topic><topic>Subdivision method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Wenbing</creatorcontrib><creatorcontrib>Chen, Falai</creatorcontrib><creatorcontrib>Liu, Xuefeng</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer aided design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, Wenbing</au><au>Chen, Falai</au><au>Liu, Xuefeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Algebraic Curve Intersections with Tolerance Control</atitle><jtitle>Computer aided design</jtitle><date>2022-06</date><risdate>2022</risdate><volume>147</volume><spage>103236</spage><pages>103236-</pages><artnum>103236</artnum><issn>0010-4485</issn><eissn>1879-2685</eissn><abstract>In this paper, a robust and efficient algorithm is proposed to calculate the intersection points of two planar algebraic curves with guaranteed tolerance. The proposed method takes advantage of the fundamental methods in the fields of CAGD, solution verification for nonlinear equations and symbolic computation. Specifically, the subdivision method is applied to quickly exclude the regions without intersection points, and then Krawczyk’s method is used to find a sharp and guaranteed bound for the intersection points. For ill-conditional cases, Sturm’s theorem is applied to determine if there are any intersection points in undetermined regions. We present examples to demonstrate the robustness and efficiency of our algorithm, and comparisons with classic methods and a state-of-the-art method are also provided. The method can be easily adapted to computing the intersection points of two parametric curves.
•An algorithm is proposed to calculate the intersection of two algebraic curves.•Subdivision method and Krawczyk’s method are combined to find the solutions.•Symbolic method is applied to address the ill conditional case.•The algorithm is robust and efficient with tolerance control.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cad.2022.103236</doi><orcidid>https://orcid.org/0000-0003-4546-1620</orcidid><orcidid>https://orcid.org/0000-0003-3105-600X</orcidid><orcidid>https://orcid.org/0000-0002-9898-5922</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4485 |
ispartof | Computer aided design, 2022-06, Vol.147, p.103236, Article 103236 |
issn | 0010-4485 1879-2685 |
language | eng |
recordid | cdi_proquest_journals_2649299545 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Algebra Algebraic curve Algorithms Curve/curve intersection Intersections Krawczyk’s method Nonlinear equations Resultant Robustness Sturm’s theorem Subdivision method |
title | Robust Algebraic Curve Intersections with Tolerance Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A12%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Algebraic%20Curve%20Intersections%20with%20Tolerance%20Control&rft.jtitle=Computer%20aided%20design&rft.au=Shao,%20Wenbing&rft.date=2022-06&rft.volume=147&rft.spage=103236&rft.pages=103236-&rft.artnum=103236&rft.issn=0010-4485&rft.eissn=1879-2685&rft_id=info:doi/10.1016/j.cad.2022.103236&rft_dat=%3Cproquest_cross%3E2649299545%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2649299545&rft_id=info:pmid/&rft_els_id=S001044852200029X&rfr_iscdi=true |