Robust Algebraic Curve Intersections with Tolerance Control

In this paper, a robust and efficient algorithm is proposed to calculate the intersection points of two planar algebraic curves with guaranteed tolerance. The proposed method takes advantage of the fundamental methods in the fields of CAGD, solution verification for nonlinear equations and symbolic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer aided design 2022-06, Vol.147, p.103236, Article 103236
Hauptverfasser: Shao, Wenbing, Chen, Falai, Liu, Xuefeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 103236
container_title Computer aided design
container_volume 147
creator Shao, Wenbing
Chen, Falai
Liu, Xuefeng
description In this paper, a robust and efficient algorithm is proposed to calculate the intersection points of two planar algebraic curves with guaranteed tolerance. The proposed method takes advantage of the fundamental methods in the fields of CAGD, solution verification for nonlinear equations and symbolic computation. Specifically, the subdivision method is applied to quickly exclude the regions without intersection points, and then Krawczyk’s method is used to find a sharp and guaranteed bound for the intersection points. For ill-conditional cases, Sturm’s theorem is applied to determine if there are any intersection points in undetermined regions. We present examples to demonstrate the robustness and efficiency of our algorithm, and comparisons with classic methods and a state-of-the-art method are also provided. The method can be easily adapted to computing the intersection points of two parametric curves. •An algorithm is proposed to calculate the intersection of two algebraic curves.•Subdivision method and Krawczyk’s method are combined to find the solutions.•Symbolic method is applied to address the ill conditional case.•The algorithm is robust and efficient with tolerance control.
doi_str_mv 10.1016/j.cad.2022.103236
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2649299545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001044852200029X</els_id><sourcerecordid>2649299545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-3549f551bed9e21b33117d4cf92072027c6e929ab5f7741b430e5425c47020713</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AHcF1x3zbBpmNRQfAwOCjOvQpreaUpsxSUf892aoa1eXC-e795yD0C3BK4JJcd-vTN2uKKY07Yyy4gwtSClVTotSnKMFxgTnnJfiEl2F0GOMKWFqgdavrplCzDbDOzS-tiarJn-EbDtG8AFMtG4M2beNH9neDeDr0UBWuTF6N1yji64eAtz8zSV6e3zYV8_57uVpW212uWFUxJwJrjohSAOtAkoaxgiRLTedolgmx9IUoKiqG9FJyUnDGQbBqTBc4qQgbInu5rsH774mCFH3bvJjeqlpwROqBBdJRWaV8S4ED50-ePtZ-x9NsD51pHudOtKnjvTcUWLWMwPJ_tGC18FYSBFb61N23Tr7D_0LMWtsQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649299545</pqid></control><display><type>article</type><title>Robust Algebraic Curve Intersections with Tolerance Control</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Shao, Wenbing ; Chen, Falai ; Liu, Xuefeng</creator><creatorcontrib>Shao, Wenbing ; Chen, Falai ; Liu, Xuefeng</creatorcontrib><description>In this paper, a robust and efficient algorithm is proposed to calculate the intersection points of two planar algebraic curves with guaranteed tolerance. The proposed method takes advantage of the fundamental methods in the fields of CAGD, solution verification for nonlinear equations and symbolic computation. Specifically, the subdivision method is applied to quickly exclude the regions without intersection points, and then Krawczyk’s method is used to find a sharp and guaranteed bound for the intersection points. For ill-conditional cases, Sturm’s theorem is applied to determine if there are any intersection points in undetermined regions. We present examples to demonstrate the robustness and efficiency of our algorithm, and comparisons with classic methods and a state-of-the-art method are also provided. The method can be easily adapted to computing the intersection points of two parametric curves. •An algorithm is proposed to calculate the intersection of two algebraic curves.•Subdivision method and Krawczyk’s method are combined to find the solutions.•Symbolic method is applied to address the ill conditional case.•The algorithm is robust and efficient with tolerance control.</description><identifier>ISSN: 0010-4485</identifier><identifier>EISSN: 1879-2685</identifier><identifier>DOI: 10.1016/j.cad.2022.103236</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Algebra ; Algebraic curve ; Algorithms ; Curve/curve intersection ; Intersections ; Krawczyk’s method ; Nonlinear equations ; Resultant ; Robustness ; Sturm’s theorem ; Subdivision method</subject><ispartof>Computer aided design, 2022-06, Vol.147, p.103236, Article 103236</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-3549f551bed9e21b33117d4cf92072027c6e929ab5f7741b430e5425c47020713</citedby><cites>FETCH-LOGICAL-c325t-3549f551bed9e21b33117d4cf92072027c6e929ab5f7741b430e5425c47020713</cites><orcidid>0000-0003-4546-1620 ; 0000-0003-3105-600X ; 0000-0002-9898-5922</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cad.2022.103236$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Shao, Wenbing</creatorcontrib><creatorcontrib>Chen, Falai</creatorcontrib><creatorcontrib>Liu, Xuefeng</creatorcontrib><title>Robust Algebraic Curve Intersections with Tolerance Control</title><title>Computer aided design</title><description>In this paper, a robust and efficient algorithm is proposed to calculate the intersection points of two planar algebraic curves with guaranteed tolerance. The proposed method takes advantage of the fundamental methods in the fields of CAGD, solution verification for nonlinear equations and symbolic computation. Specifically, the subdivision method is applied to quickly exclude the regions without intersection points, and then Krawczyk’s method is used to find a sharp and guaranteed bound for the intersection points. For ill-conditional cases, Sturm’s theorem is applied to determine if there are any intersection points in undetermined regions. We present examples to demonstrate the robustness and efficiency of our algorithm, and comparisons with classic methods and a state-of-the-art method are also provided. The method can be easily adapted to computing the intersection points of two parametric curves. •An algorithm is proposed to calculate the intersection of two algebraic curves.•Subdivision method and Krawczyk’s method are combined to find the solutions.•Symbolic method is applied to address the ill conditional case.•The algorithm is robust and efficient with tolerance control.</description><subject>Algebra</subject><subject>Algebraic curve</subject><subject>Algorithms</subject><subject>Curve/curve intersection</subject><subject>Intersections</subject><subject>Krawczyk’s method</subject><subject>Nonlinear equations</subject><subject>Resultant</subject><subject>Robustness</subject><subject>Sturm’s theorem</subject><subject>Subdivision method</subject><issn>0010-4485</issn><issn>1879-2685</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AHcF1x3zbBpmNRQfAwOCjOvQpreaUpsxSUf892aoa1eXC-e795yD0C3BK4JJcd-vTN2uKKY07Yyy4gwtSClVTotSnKMFxgTnnJfiEl2F0GOMKWFqgdavrplCzDbDOzS-tiarJn-EbDtG8AFMtG4M2beNH9neDeDr0UBWuTF6N1yji64eAtz8zSV6e3zYV8_57uVpW212uWFUxJwJrjohSAOtAkoaxgiRLTedolgmx9IUoKiqG9FJyUnDGQbBqTBc4qQgbInu5rsH774mCFH3bvJjeqlpwROqBBdJRWaV8S4ED50-ePtZ-x9NsD51pHudOtKnjvTcUWLWMwPJ_tGC18FYSBFb61N23Tr7D_0LMWtsQQ</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Shao, Wenbing</creator><creator>Chen, Falai</creator><creator>Liu, Xuefeng</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4546-1620</orcidid><orcidid>https://orcid.org/0000-0003-3105-600X</orcidid><orcidid>https://orcid.org/0000-0002-9898-5922</orcidid></search><sort><creationdate>202206</creationdate><title>Robust Algebraic Curve Intersections with Tolerance Control</title><author>Shao, Wenbing ; Chen, Falai ; Liu, Xuefeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-3549f551bed9e21b33117d4cf92072027c6e929ab5f7741b430e5425c47020713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Algebraic curve</topic><topic>Algorithms</topic><topic>Curve/curve intersection</topic><topic>Intersections</topic><topic>Krawczyk’s method</topic><topic>Nonlinear equations</topic><topic>Resultant</topic><topic>Robustness</topic><topic>Sturm’s theorem</topic><topic>Subdivision method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Wenbing</creatorcontrib><creatorcontrib>Chen, Falai</creatorcontrib><creatorcontrib>Liu, Xuefeng</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer aided design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, Wenbing</au><au>Chen, Falai</au><au>Liu, Xuefeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Algebraic Curve Intersections with Tolerance Control</atitle><jtitle>Computer aided design</jtitle><date>2022-06</date><risdate>2022</risdate><volume>147</volume><spage>103236</spage><pages>103236-</pages><artnum>103236</artnum><issn>0010-4485</issn><eissn>1879-2685</eissn><abstract>In this paper, a robust and efficient algorithm is proposed to calculate the intersection points of two planar algebraic curves with guaranteed tolerance. The proposed method takes advantage of the fundamental methods in the fields of CAGD, solution verification for nonlinear equations and symbolic computation. Specifically, the subdivision method is applied to quickly exclude the regions without intersection points, and then Krawczyk’s method is used to find a sharp and guaranteed bound for the intersection points. For ill-conditional cases, Sturm’s theorem is applied to determine if there are any intersection points in undetermined regions. We present examples to demonstrate the robustness and efficiency of our algorithm, and comparisons with classic methods and a state-of-the-art method are also provided. The method can be easily adapted to computing the intersection points of two parametric curves. •An algorithm is proposed to calculate the intersection of two algebraic curves.•Subdivision method and Krawczyk’s method are combined to find the solutions.•Symbolic method is applied to address the ill conditional case.•The algorithm is robust and efficient with tolerance control.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cad.2022.103236</doi><orcidid>https://orcid.org/0000-0003-4546-1620</orcidid><orcidid>https://orcid.org/0000-0003-3105-600X</orcidid><orcidid>https://orcid.org/0000-0002-9898-5922</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-4485
ispartof Computer aided design, 2022-06, Vol.147, p.103236, Article 103236
issn 0010-4485
1879-2685
language eng
recordid cdi_proquest_journals_2649299545
source Elsevier ScienceDirect Journals Complete
subjects Algebra
Algebraic curve
Algorithms
Curve/curve intersection
Intersections
Krawczyk’s method
Nonlinear equations
Resultant
Robustness
Sturm’s theorem
Subdivision method
title Robust Algebraic Curve Intersections with Tolerance Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A12%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Algebraic%20Curve%20Intersections%20with%20Tolerance%20Control&rft.jtitle=Computer%20aided%20design&rft.au=Shao,%20Wenbing&rft.date=2022-06&rft.volume=147&rft.spage=103236&rft.pages=103236-&rft.artnum=103236&rft.issn=0010-4485&rft.eissn=1879-2685&rft_id=info:doi/10.1016/j.cad.2022.103236&rft_dat=%3Cproquest_cross%3E2649299545%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2649299545&rft_id=info:pmid/&rft_els_id=S001044852200029X&rfr_iscdi=true