Thermal response tests on deep boreholes through multiple ground layers

•New semi-analytical model of distributed thermal response tests (DTRT).•Model handles multiple ground layers and geothermal gradient.•Parameter estimation method estimates ground-layer thermal conductivities, kgr.•Method identifies downward and upward trends in kgr with depth.•Uncertainty of estima...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geothermics 2022-05, Vol.101, p.102371, Article 102371
Hauptverfasser: Beier, Richard A., Morchio, Stefano, Fossa, Marco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 102371
container_title Geothermics
container_volume 101
creator Beier, Richard A.
Morchio, Stefano
Fossa, Marco
description •New semi-analytical model of distributed thermal response tests (DTRT).•Model handles multiple ground layers and geothermal gradient.•Parameter estimation method estimates ground-layer thermal conductivities, kgr.•Method identifies downward and upward trends in kgr with depth.•Uncertainty of estimated mean ground kgr is within ±0.2 W/(m‧K). Distributed thermal response tests (DTRTs) on vertical boreholes estimate design parameters, which are used in the coupling of these boreholes to heat pumps. A semi-analytical model of a DTRT has been developed that includes multiple ground layers and the geothermal gradient for deep boreholes. The model is computationally efficient, which allows quick estimates of ground properties when the model is linked with parameter estimation techniques. The study focuses on coaxial boreholes, which are the more likely geometry for deep boreholes, although the model also handles boreholes with U-tubes. The proposed model is validated against previous DTRT simulations with an independent numerical model. In the cases studied, the model estimates the mean ground thermal conductivity within ± 5% of the exact value, while the uncertainty of the estimate is ± 10% or ± 0.2 W/(m‧K). The model identifies upward and downward increasing trends of thermal conductivity among ground layers. The estimates of ground thermal conductivity for individual layers have uncertainties as large as ± 0.65 W/(m‧K) under heat extraction cases in deep boreholes (800 m).
doi_str_mv 10.1016/j.geothermics.2022.102371
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2649299050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0375650522000244</els_id><sourcerecordid>2649299050</sourcerecordid><originalsourceid>FETCH-LOGICAL-a372t-e02fa1c1d00cef60556c8f32ca6fd29c883a22065e7758ee96c59ae20705dc683</originalsourceid><addsrcrecordid>eNqNkEFPwzAMhSMEEmPwH4I4dzgpSZojmmBDmsRlnKOQumurrilJirR_T6dy4MjJsvXes_0Rcs9gxYDJx3Z1QJ9qDMfGxRUHzqc5zxW7IAtWKJ3lQslLsoBciUwKENfkJsYWAJRQsCCb_dlrOxowDr6PSBPGFKnvaYk40E8fsPYdRprq4MdDTY9jl5qhQ3qY-r6knT1hiLfkqrJdxLvfuiQfry_79TbbvW_e1s-7zOaKpwyBV5Y5VgI4rCQIIV1R5dxZWZVcu6LILecgBSolCkQtndAWOSgQpZNFviQPc-4Q_Nc4nWpaP4Z-Wmm4fNJcaxAwqfSscsHHGLAyQ2iONpwMA3PmZlrzh5s5czMzt8m7nr04vfHdYDDRNdg7LJuALpnSN_9I-QFmIH0S</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649299050</pqid></control><display><type>article</type><title>Thermal response tests on deep boreholes through multiple ground layers</title><source>Access via ScienceDirect (Elsevier)</source><creator>Beier, Richard A. ; Morchio, Stefano ; Fossa, Marco</creator><creatorcontrib>Beier, Richard A. ; Morchio, Stefano ; Fossa, Marco</creatorcontrib><description>•New semi-analytical model of distributed thermal response tests (DTRT).•Model handles multiple ground layers and geothermal gradient.•Parameter estimation method estimates ground-layer thermal conductivities, kgr.•Method identifies downward and upward trends in kgr with depth.•Uncertainty of estimated mean ground kgr is within ±0.2 W/(m‧K). Distributed thermal response tests (DTRTs) on vertical boreholes estimate design parameters, which are used in the coupling of these boreholes to heat pumps. A semi-analytical model of a DTRT has been developed that includes multiple ground layers and the geothermal gradient for deep boreholes. The model is computationally efficient, which allows quick estimates of ground properties when the model is linked with parameter estimation techniques. The study focuses on coaxial boreholes, which are the more likely geometry for deep boreholes, although the model also handles boreholes with U-tubes. The proposed model is validated against previous DTRT simulations with an independent numerical model. In the cases studied, the model estimates the mean ground thermal conductivity within ± 5% of the exact value, while the uncertainty of the estimate is ± 10% or ± 0.2 W/(m‧K). The model identifies upward and downward increasing trends of thermal conductivity among ground layers. The estimates of ground thermal conductivity for individual layers have uncertainties as large as ± 0.65 W/(m‧K) under heat extraction cases in deep boreholes (800 m).</description><identifier>ISSN: 0375-6505</identifier><identifier>EISSN: 1879-3576</identifier><identifier>DOI: 10.1016/j.geothermics.2022.102371</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Boreholes ; Design parameters ; Estimates ; Geothermal gradient ; Geothermal power ; Ground heat exchanger ; Ground thermal conductivity ; Heat conductivity ; Heat exchangers ; Heat pumps ; Heat transfer ; Heat treatment ; Mathematical models ; Multiple ground layers ; Numerical models ; Parameter estimation ; Thermal conductivity ; Thermal response ; Thermal response test ; Tubes ; Uncertainty</subject><ispartof>Geothermics, 2022-05, Vol.101, p.102371, Article 102371</ispartof><rights>2022</rights><rights>Copyright Elsevier Science Ltd. May 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a372t-e02fa1c1d00cef60556c8f32ca6fd29c883a22065e7758ee96c59ae20705dc683</citedby><cites>FETCH-LOGICAL-a372t-e02fa1c1d00cef60556c8f32ca6fd29c883a22065e7758ee96c59ae20705dc683</cites><orcidid>0000-0001-6580-3021 ; 0000-0003-4219-3229</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.geothermics.2022.102371$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Beier, Richard A.</creatorcontrib><creatorcontrib>Morchio, Stefano</creatorcontrib><creatorcontrib>Fossa, Marco</creatorcontrib><title>Thermal response tests on deep boreholes through multiple ground layers</title><title>Geothermics</title><description>•New semi-analytical model of distributed thermal response tests (DTRT).•Model handles multiple ground layers and geothermal gradient.•Parameter estimation method estimates ground-layer thermal conductivities, kgr.•Method identifies downward and upward trends in kgr with depth.•Uncertainty of estimated mean ground kgr is within ±0.2 W/(m‧K). Distributed thermal response tests (DTRTs) on vertical boreholes estimate design parameters, which are used in the coupling of these boreholes to heat pumps. A semi-analytical model of a DTRT has been developed that includes multiple ground layers and the geothermal gradient for deep boreholes. The model is computationally efficient, which allows quick estimates of ground properties when the model is linked with parameter estimation techniques. The study focuses on coaxial boreholes, which are the more likely geometry for deep boreholes, although the model also handles boreholes with U-tubes. The proposed model is validated against previous DTRT simulations with an independent numerical model. In the cases studied, the model estimates the mean ground thermal conductivity within ± 5% of the exact value, while the uncertainty of the estimate is ± 10% or ± 0.2 W/(m‧K). The model identifies upward and downward increasing trends of thermal conductivity among ground layers. The estimates of ground thermal conductivity for individual layers have uncertainties as large as ± 0.65 W/(m‧K) under heat extraction cases in deep boreholes (800 m).</description><subject>Boreholes</subject><subject>Design parameters</subject><subject>Estimates</subject><subject>Geothermal gradient</subject><subject>Geothermal power</subject><subject>Ground heat exchanger</subject><subject>Ground thermal conductivity</subject><subject>Heat conductivity</subject><subject>Heat exchangers</subject><subject>Heat pumps</subject><subject>Heat transfer</subject><subject>Heat treatment</subject><subject>Mathematical models</subject><subject>Multiple ground layers</subject><subject>Numerical models</subject><subject>Parameter estimation</subject><subject>Thermal conductivity</subject><subject>Thermal response</subject><subject>Thermal response test</subject><subject>Tubes</subject><subject>Uncertainty</subject><issn>0375-6505</issn><issn>1879-3576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkEFPwzAMhSMEEmPwH4I4dzgpSZojmmBDmsRlnKOQumurrilJirR_T6dy4MjJsvXes_0Rcs9gxYDJx3Z1QJ9qDMfGxRUHzqc5zxW7IAtWKJ3lQslLsoBciUwKENfkJsYWAJRQsCCb_dlrOxowDr6PSBPGFKnvaYk40E8fsPYdRprq4MdDTY9jl5qhQ3qY-r6knT1hiLfkqrJdxLvfuiQfry_79TbbvW_e1s-7zOaKpwyBV5Y5VgI4rCQIIV1R5dxZWZVcu6LILecgBSolCkQtndAWOSgQpZNFviQPc-4Q_Nc4nWpaP4Z-Wmm4fNJcaxAwqfSscsHHGLAyQ2iONpwMA3PmZlrzh5s5czMzt8m7nr04vfHdYDDRNdg7LJuALpnSN_9I-QFmIH0S</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Beier, Richard A.</creator><creator>Morchio, Stefano</creator><creator>Fossa, Marco</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-6580-3021</orcidid><orcidid>https://orcid.org/0000-0003-4219-3229</orcidid></search><sort><creationdate>202205</creationdate><title>Thermal response tests on deep boreholes through multiple ground layers</title><author>Beier, Richard A. ; Morchio, Stefano ; Fossa, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a372t-e02fa1c1d00cef60556c8f32ca6fd29c883a22065e7758ee96c59ae20705dc683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boreholes</topic><topic>Design parameters</topic><topic>Estimates</topic><topic>Geothermal gradient</topic><topic>Geothermal power</topic><topic>Ground heat exchanger</topic><topic>Ground thermal conductivity</topic><topic>Heat conductivity</topic><topic>Heat exchangers</topic><topic>Heat pumps</topic><topic>Heat transfer</topic><topic>Heat treatment</topic><topic>Mathematical models</topic><topic>Multiple ground layers</topic><topic>Numerical models</topic><topic>Parameter estimation</topic><topic>Thermal conductivity</topic><topic>Thermal response</topic><topic>Thermal response test</topic><topic>Tubes</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beier, Richard A.</creatorcontrib><creatorcontrib>Morchio, Stefano</creatorcontrib><creatorcontrib>Fossa, Marco</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Geothermics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beier, Richard A.</au><au>Morchio, Stefano</au><au>Fossa, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal response tests on deep boreholes through multiple ground layers</atitle><jtitle>Geothermics</jtitle><date>2022-05</date><risdate>2022</risdate><volume>101</volume><spage>102371</spage><pages>102371-</pages><artnum>102371</artnum><issn>0375-6505</issn><eissn>1879-3576</eissn><abstract>•New semi-analytical model of distributed thermal response tests (DTRT).•Model handles multiple ground layers and geothermal gradient.•Parameter estimation method estimates ground-layer thermal conductivities, kgr.•Method identifies downward and upward trends in kgr with depth.•Uncertainty of estimated mean ground kgr is within ±0.2 W/(m‧K). Distributed thermal response tests (DTRTs) on vertical boreholes estimate design parameters, which are used in the coupling of these boreholes to heat pumps. A semi-analytical model of a DTRT has been developed that includes multiple ground layers and the geothermal gradient for deep boreholes. The model is computationally efficient, which allows quick estimates of ground properties when the model is linked with parameter estimation techniques. The study focuses on coaxial boreholes, which are the more likely geometry for deep boreholes, although the model also handles boreholes with U-tubes. The proposed model is validated against previous DTRT simulations with an independent numerical model. In the cases studied, the model estimates the mean ground thermal conductivity within ± 5% of the exact value, while the uncertainty of the estimate is ± 10% or ± 0.2 W/(m‧K). The model identifies upward and downward increasing trends of thermal conductivity among ground layers. The estimates of ground thermal conductivity for individual layers have uncertainties as large as ± 0.65 W/(m‧K) under heat extraction cases in deep boreholes (800 m).</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.geothermics.2022.102371</doi><orcidid>https://orcid.org/0000-0001-6580-3021</orcidid><orcidid>https://orcid.org/0000-0003-4219-3229</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0375-6505
ispartof Geothermics, 2022-05, Vol.101, p.102371, Article 102371
issn 0375-6505
1879-3576
language eng
recordid cdi_proquest_journals_2649299050
source Access via ScienceDirect (Elsevier)
subjects Boreholes
Design parameters
Estimates
Geothermal gradient
Geothermal power
Ground heat exchanger
Ground thermal conductivity
Heat conductivity
Heat exchangers
Heat pumps
Heat transfer
Heat treatment
Mathematical models
Multiple ground layers
Numerical models
Parameter estimation
Thermal conductivity
Thermal response
Thermal response test
Tubes
Uncertainty
title Thermal response tests on deep boreholes through multiple ground layers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A49%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20response%20tests%20on%20deep%20boreholes%20through%20multiple%20ground%20layers&rft.jtitle=Geothermics&rft.au=Beier,%20Richard%20A.&rft.date=2022-05&rft.volume=101&rft.spage=102371&rft.pages=102371-&rft.artnum=102371&rft.issn=0375-6505&rft.eissn=1879-3576&rft_id=info:doi/10.1016/j.geothermics.2022.102371&rft_dat=%3Cproquest_cross%3E2649299050%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2649299050&rft_id=info:pmid/&rft_els_id=S0375650522000244&rfr_iscdi=true