Multipass Yb : KGW disk amplifier
We have investigated a multipass Yb : KGW disk amplifier based on the White cell configuration and pumped by a laser diode with a fibre output. It is shown that the three-mirror layout of the cell is three times more efficient than the four-mirror one, since the size and position of the signal beam...
Gespeichert in:
Veröffentlicht in: | Quantum electronics (Woodbury, N.Y.) N.Y.), 2022-04, Vol.52 (4), p.332-339 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 339 |
---|---|
container_issue | 4 |
container_start_page | 332 |
container_title | Quantum electronics (Woodbury, N.Y.) |
container_volume | 52 |
creator | Potemkin, A.K. Martyanov, M.A. Mironov, S.Yu |
description | We have investigated a multipass Yb : KGW disk amplifier based on the White cell configuration and pumped by a laser diode with a fibre output. It is shown that the three-mirror layout of the cell is three times more efficient than the four-mirror one, since the size and position of the signal beam on the surface of the active element do not depend on the cell number of passes. For a three-mirror cell scheme, a small-signal gain
G
= 168 is obtained in experiments for a pump power of 360 W. The experimentally achieved gain of two such amplifiers arranged in series is 6 × 10
4
, which exceeds
G
2
approximately two-fold. |
doi_str_mv | 10.1070/QEL18026 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2649297793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2649297793</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-43bfa27c6065fa9afbeef511dc961b88e5b8f5aa35c4f24231a5e98e7183795a3</originalsourceid><addsrcrecordid>eNpl0M1KxDAUBeAgCg7jgI9Q0YWbav5z406GcRQrIijiKiSdBKIdW5N24dtbqeLC1b2Lj3PgIHRI8BnBCp8_rCoCmModNCNcQsmV1rvjjyUrFRDYR4uco8OCcyxAwgwd3Q1NHzubc_Hiiovidv1cbGJ-K-y2a2KIPh2gvWCb7Bc_d46erlaPy-uyul_fLC-rsmYE-pIzFyxVtcRSBKttcN4HQcim1pI4AC8cBGEtEzUPlFNGrPAavCLAlBaWzdHxlNul9mPwuTev7ZDex0pDJddUK6XZqE4nVac25-SD6VLc2vRpCDbfG5jfDUZ6MtHYdn9Z_9gX4GpWrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649297793</pqid></control><display><type>article</type><title>Multipass Yb : KGW disk amplifier</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Potemkin, A.K. ; Martyanov, M.A. ; Mironov, S.Yu</creator><creatorcontrib>Potemkin, A.K. ; Martyanov, M.A. ; Mironov, S.Yu</creatorcontrib><description>We have investigated a multipass Yb : KGW disk amplifier based on the White cell configuration and pumped by a laser diode with a fibre output. It is shown that the three-mirror layout of the cell is three times more efficient than the four-mirror one, since the size and position of the signal beam on the surface of the active element do not depend on the cell number of passes. For a three-mirror cell scheme, a small-signal gain
G
= 168 is obtained in experiments for a pump power of 360 W. The experimentally achieved gain of two such amplifiers arranged in series is 6 × 10
4
, which exceeds
G
2
approximately two-fold.</description><identifier>ISSN: 1063-7818</identifier><identifier>EISSN: 1468-4799</identifier><identifier>DOI: 10.1070/QEL18026</identifier><language>eng</language><publisher>Bristol: Kvantovaya Elektronika, Turpion Ltd and IOP Publishing</publisher><subject>Amplification ; Amplifiers ; multipass amplifier ; Potassium gadolinium tungstate ; Semiconductor lasers ; spherical aberration ; White cell</subject><ispartof>Quantum electronics (Woodbury, N.Y.), 2022-04, Vol.52 (4), p.332-339</ispartof><rights>2022 Kvantovaya Elektronika and IOP Publishing Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-43bfa27c6065fa9afbeef511dc961b88e5b8f5aa35c4f24231a5e98e7183795a3</citedby><cites>FETCH-LOGICAL-c318t-43bfa27c6065fa9afbeef511dc961b88e5b8f5aa35c4f24231a5e98e7183795a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1070/QEL18026/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,777,781,27905,27906,53827,53874</link.rule.ids></links><search><creatorcontrib>Potemkin, A.K.</creatorcontrib><creatorcontrib>Martyanov, M.A.</creatorcontrib><creatorcontrib>Mironov, S.Yu</creatorcontrib><title>Multipass Yb : KGW disk amplifier</title><title>Quantum electronics (Woodbury, N.Y.)</title><addtitle>Quantum Electron</addtitle><description>We have investigated a multipass Yb : KGW disk amplifier based on the White cell configuration and pumped by a laser diode with a fibre output. It is shown that the three-mirror layout of the cell is three times more efficient than the four-mirror one, since the size and position of the signal beam on the surface of the active element do not depend on the cell number of passes. For a three-mirror cell scheme, a small-signal gain
G
= 168 is obtained in experiments for a pump power of 360 W. The experimentally achieved gain of two such amplifiers arranged in series is 6 × 10
4
, which exceeds
G
2
approximately two-fold.</description><subject>Amplification</subject><subject>Amplifiers</subject><subject>multipass amplifier</subject><subject>Potassium gadolinium tungstate</subject><subject>Semiconductor lasers</subject><subject>spherical aberration</subject><subject>White cell</subject><issn>1063-7818</issn><issn>1468-4799</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpl0M1KxDAUBeAgCg7jgI9Q0YWbav5z406GcRQrIijiKiSdBKIdW5N24dtbqeLC1b2Lj3PgIHRI8BnBCp8_rCoCmModNCNcQsmV1rvjjyUrFRDYR4uco8OCcyxAwgwd3Q1NHzubc_Hiiovidv1cbGJ-K-y2a2KIPh2gvWCb7Bc_d46erlaPy-uyul_fLC-rsmYE-pIzFyxVtcRSBKttcN4HQcim1pI4AC8cBGEtEzUPlFNGrPAavCLAlBaWzdHxlNul9mPwuTev7ZDex0pDJddUK6XZqE4nVac25-SD6VLc2vRpCDbfG5jfDUZ6MtHYdn9Z_9gX4GpWrw</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Potemkin, A.K.</creator><creator>Martyanov, M.A.</creator><creator>Mironov, S.Yu</creator><general>Kvantovaya Elektronika, Turpion Ltd and IOP Publishing</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20220401</creationdate><title>Multipass Yb : KGW disk amplifier</title><author>Potemkin, A.K. ; Martyanov, M.A. ; Mironov, S.Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-43bfa27c6065fa9afbeef511dc961b88e5b8f5aa35c4f24231a5e98e7183795a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amplification</topic><topic>Amplifiers</topic><topic>multipass amplifier</topic><topic>Potassium gadolinium tungstate</topic><topic>Semiconductor lasers</topic><topic>spherical aberration</topic><topic>White cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Potemkin, A.K.</creatorcontrib><creatorcontrib>Martyanov, M.A.</creatorcontrib><creatorcontrib>Mironov, S.Yu</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Quantum electronics (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Potemkin, A.K.</au><au>Martyanov, M.A.</au><au>Mironov, S.Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multipass Yb : KGW disk amplifier</atitle><jtitle>Quantum electronics (Woodbury, N.Y.)</jtitle><addtitle>Quantum Electron</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>52</volume><issue>4</issue><spage>332</spage><epage>339</epage><pages>332-339</pages><issn>1063-7818</issn><eissn>1468-4799</eissn><abstract>We have investigated a multipass Yb : KGW disk amplifier based on the White cell configuration and pumped by a laser diode with a fibre output. It is shown that the three-mirror layout of the cell is three times more efficient than the four-mirror one, since the size and position of the signal beam on the surface of the active element do not depend on the cell number of passes. For a three-mirror cell scheme, a small-signal gain
G
= 168 is obtained in experiments for a pump power of 360 W. The experimentally achieved gain of two such amplifiers arranged in series is 6 × 10
4
, which exceeds
G
2
approximately two-fold.</abstract><cop>Bristol</cop><pub>Kvantovaya Elektronika, Turpion Ltd and IOP Publishing</pub><doi>10.1070/QEL18026</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7818 |
ispartof | Quantum electronics (Woodbury, N.Y.), 2022-04, Vol.52 (4), p.332-339 |
issn | 1063-7818 1468-4799 |
language | eng |
recordid | cdi_proquest_journals_2649297793 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Amplification Amplifiers multipass amplifier Potassium gadolinium tungstate Semiconductor lasers spherical aberration White cell |
title | Multipass Yb : KGW disk amplifier |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A01%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multipass%20Yb%20:%20KGW%20disk%20amplifier&rft.jtitle=Quantum%20electronics%20(Woodbury,%20N.Y.)&rft.au=Potemkin,%20A.K.&rft.date=2022-04-01&rft.volume=52&rft.issue=4&rft.spage=332&rft.epage=339&rft.pages=332-339&rft.issn=1063-7818&rft.eissn=1468-4799&rft_id=info:doi/10.1070/QEL18026&rft_dat=%3Cproquest_cross%3E2649297793%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2649297793&rft_id=info:pmid/&rfr_iscdi=true |