Nondestructive Bridge Deck Evaluation Using Sub-mm 3D Laser Imaging Technology at Highway Speeds

Abstract Periodic bridge deck inspection is critically important in bridge management and maintenance. This paper presents a comprehensive bridge deck evaluation using sub-mm three-dimensional (3D) laser imaging technology in a nondestructive and efficient manner at highway speeds with complete lane...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of bridge engineering 2022-06, Vol.27 (6)
Hauptverfasser: Wang, Guolong, Wang, Kelvin C. P, Yang, Guangwei, Liu, Yang, Li, Joshua Qiang, Peters, Walt
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Journal of bridge engineering
container_volume 27
creator Wang, Guolong
Wang, Kelvin C. P
Yang, Guangwei
Liu, Yang
Li, Joshua Qiang
Peters, Walt
description Abstract Periodic bridge deck inspection is critically important in bridge management and maintenance. This paper presents a comprehensive bridge deck evaluation using sub-mm three-dimensional (3D) laser imaging technology in a nondestructive and efficient manner at highway speeds with complete lane coverage. A total of 58 bridge decks in Oklahoma were evaluated via Pave3D 8K system and 3D Safety Sensor. The Pave3D 8K system collected both 0.5-mm 3D height images, 2D grayscale images, and longitudinal profiler at highway speeds for bridge deck assessment in terms of distress detection and roughness evaluation. A Deep Learning-based method was applied to detect cracks automatically, and a manual tool was developed to label other distress for bridge decks and joints from the obtained images. Further, the 0.5-mm 3D images and longitudinal profiler data were combined to identify locations with roughness issues and the causes on bridge decks or approach slabs. Finally, the 3D Safety Sensor acquired 0.1-mm 2D/3D images for hydroplaning speed prediction of bridge decks. The evaluation results demonstrate the efficacy of the sub-mm 3D laser imaging technology for nondestructive bridge deck conditions and safety evaluations.
doi_str_mv 10.1061/(ASCE)BE.1943-5592.0001888
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2649281755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2649281755</sourcerecordid><originalsourceid>FETCH-LOGICAL-a337t-4dbfa8b53aadfed343d9dd9340a7c50ad67247b0ceef1da8c1189d3123f79e473</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqXwDhZc4JBix05sc-tPoJUqOLQ9Gyd20pQmKXZS1LcnUQucOO1qNDOr_QC4xWiAUYgf74eLcfQwigZYUOIFgfAHCCHMOT8DvV_tvN0Rpx5iyL8EV85tWg8NBemB99eq1MbVtknqfG_gyOY6M3Bikg8Y7dW2UXVelXDl8jKDiyb2igKSCZwrZyycFSrr9KVJ1mW1rbIDVDWc5tn6Sx3gYmeMdtfgIlVbZ25Osw9Wz9FyPPXmby-z8XDuKUJY7VEdp4rHAVFKp0YTSrTQWhCKFEsCpHTIfMpilBiTYq14gjEXmmCfpEwYykgf3B17d7b6bNqP5KZqbNmelH5Ihc8xC4LW9XR0JbZyzppU7mxeKHuQGMmOqJQdUTmKZEdPdvTkiWgbDo9h5RLzV_-T_D_4DUmSer0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649281755</pqid></control><display><type>article</type><title>Nondestructive Bridge Deck Evaluation Using Sub-mm 3D Laser Imaging Technology at Highway Speeds</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Wang, Guolong ; Wang, Kelvin C. P ; Yang, Guangwei ; Liu, Yang ; Li, Joshua Qiang ; Peters, Walt</creator><creatorcontrib>Wang, Guolong ; Wang, Kelvin C. P ; Yang, Guangwei ; Liu, Yang ; Li, Joshua Qiang ; Peters, Walt</creatorcontrib><description>Abstract Periodic bridge deck inspection is critically important in bridge management and maintenance. This paper presents a comprehensive bridge deck evaluation using sub-mm three-dimensional (3D) laser imaging technology in a nondestructive and efficient manner at highway speeds with complete lane coverage. A total of 58 bridge decks in Oklahoma were evaluated via Pave3D 8K system and 3D Safety Sensor. The Pave3D 8K system collected both 0.5-mm 3D height images, 2D grayscale images, and longitudinal profiler at highway speeds for bridge deck assessment in terms of distress detection and roughness evaluation. A Deep Learning-based method was applied to detect cracks automatically, and a manual tool was developed to label other distress for bridge decks and joints from the obtained images. Further, the 0.5-mm 3D images and longitudinal profiler data were combined to identify locations with roughness issues and the causes on bridge decks or approach slabs. Finally, the 3D Safety Sensor acquired 0.1-mm 2D/3D images for hydroplaning speed prediction of bridge decks. The evaluation results demonstrate the efficacy of the sub-mm 3D laser imaging technology for nondestructive bridge deck conditions and safety evaluations.</description><identifier>ISSN: 1084-0702</identifier><identifier>EISSN: 1943-5592</identifier><identifier>DOI: 10.1061/(ASCE)BE.1943-5592.0001888</identifier><language>eng</language><publisher>New York: American Society of Civil Engineers</publisher><subject>Bridge construction ; Bridge decks ; Bridge inspection ; Bridge maintenance ; Bridges ; Civil engineering ; Deep learning ; Evaluation ; Flaw detection ; Hand tools ; Hydroplaning ; Image acquisition ; Imaging techniques ; Inspection ; Joints (timber) ; Lasers ; Nondestructive testing ; Roughness ; Safety ; Sensors ; Slabs ; Technical Papers ; Technology ; Three dimensional imaging</subject><ispartof>Journal of bridge engineering, 2022-06, Vol.27 (6)</ispartof><rights>2022 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a337t-4dbfa8b53aadfed343d9dd9340a7c50ad67247b0ceef1da8c1189d3123f79e473</citedby><cites>FETCH-LOGICAL-a337t-4dbfa8b53aadfed343d9dd9340a7c50ad67247b0ceef1da8c1189d3123f79e473</cites><orcidid>0000-0002-0870-2440</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)BE.1943-5592.0001888$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)BE.1943-5592.0001888$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,76193,76201</link.rule.ids></links><search><creatorcontrib>Wang, Guolong</creatorcontrib><creatorcontrib>Wang, Kelvin C. P</creatorcontrib><creatorcontrib>Yang, Guangwei</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Li, Joshua Qiang</creatorcontrib><creatorcontrib>Peters, Walt</creatorcontrib><title>Nondestructive Bridge Deck Evaluation Using Sub-mm 3D Laser Imaging Technology at Highway Speeds</title><title>Journal of bridge engineering</title><description>Abstract Periodic bridge deck inspection is critically important in bridge management and maintenance. This paper presents a comprehensive bridge deck evaluation using sub-mm three-dimensional (3D) laser imaging technology in a nondestructive and efficient manner at highway speeds with complete lane coverage. A total of 58 bridge decks in Oklahoma were evaluated via Pave3D 8K system and 3D Safety Sensor. The Pave3D 8K system collected both 0.5-mm 3D height images, 2D grayscale images, and longitudinal profiler at highway speeds for bridge deck assessment in terms of distress detection and roughness evaluation. A Deep Learning-based method was applied to detect cracks automatically, and a manual tool was developed to label other distress for bridge decks and joints from the obtained images. Further, the 0.5-mm 3D images and longitudinal profiler data were combined to identify locations with roughness issues and the causes on bridge decks or approach slabs. Finally, the 3D Safety Sensor acquired 0.1-mm 2D/3D images for hydroplaning speed prediction of bridge decks. The evaluation results demonstrate the efficacy of the sub-mm 3D laser imaging technology for nondestructive bridge deck conditions and safety evaluations.</description><subject>Bridge construction</subject><subject>Bridge decks</subject><subject>Bridge inspection</subject><subject>Bridge maintenance</subject><subject>Bridges</subject><subject>Civil engineering</subject><subject>Deep learning</subject><subject>Evaluation</subject><subject>Flaw detection</subject><subject>Hand tools</subject><subject>Hydroplaning</subject><subject>Image acquisition</subject><subject>Imaging techniques</subject><subject>Inspection</subject><subject>Joints (timber)</subject><subject>Lasers</subject><subject>Nondestructive testing</subject><subject>Roughness</subject><subject>Safety</subject><subject>Sensors</subject><subject>Slabs</subject><subject>Technical Papers</subject><subject>Technology</subject><subject>Three dimensional imaging</subject><issn>1084-0702</issn><issn>1943-5592</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EEqXwDhZc4JBix05sc-tPoJUqOLQ9Gyd20pQmKXZS1LcnUQucOO1qNDOr_QC4xWiAUYgf74eLcfQwigZYUOIFgfAHCCHMOT8DvV_tvN0Rpx5iyL8EV85tWg8NBemB99eq1MbVtknqfG_gyOY6M3Bikg8Y7dW2UXVelXDl8jKDiyb2igKSCZwrZyycFSrr9KVJ1mW1rbIDVDWc5tn6Sx3gYmeMdtfgIlVbZ25Osw9Wz9FyPPXmby-z8XDuKUJY7VEdp4rHAVFKp0YTSrTQWhCKFEsCpHTIfMpilBiTYq14gjEXmmCfpEwYykgf3B17d7b6bNqP5KZqbNmelH5Ihc8xC4LW9XR0JbZyzppU7mxeKHuQGMmOqJQdUTmKZEdPdvTkiWgbDo9h5RLzV_-T_D_4DUmSer0</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Wang, Guolong</creator><creator>Wang, Kelvin C. P</creator><creator>Yang, Guangwei</creator><creator>Liu, Yang</creator><creator>Li, Joshua Qiang</creator><creator>Peters, Walt</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0002-0870-2440</orcidid></search><sort><creationdate>20220601</creationdate><title>Nondestructive Bridge Deck Evaluation Using Sub-mm 3D Laser Imaging Technology at Highway Speeds</title><author>Wang, Guolong ; Wang, Kelvin C. P ; Yang, Guangwei ; Liu, Yang ; Li, Joshua Qiang ; Peters, Walt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a337t-4dbfa8b53aadfed343d9dd9340a7c50ad67247b0ceef1da8c1189d3123f79e473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bridge construction</topic><topic>Bridge decks</topic><topic>Bridge inspection</topic><topic>Bridge maintenance</topic><topic>Bridges</topic><topic>Civil engineering</topic><topic>Deep learning</topic><topic>Evaluation</topic><topic>Flaw detection</topic><topic>Hand tools</topic><topic>Hydroplaning</topic><topic>Image acquisition</topic><topic>Imaging techniques</topic><topic>Inspection</topic><topic>Joints (timber)</topic><topic>Lasers</topic><topic>Nondestructive testing</topic><topic>Roughness</topic><topic>Safety</topic><topic>Sensors</topic><topic>Slabs</topic><topic>Technical Papers</topic><topic>Technology</topic><topic>Three dimensional imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Guolong</creatorcontrib><creatorcontrib>Wang, Kelvin C. P</creatorcontrib><creatorcontrib>Yang, Guangwei</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Li, Joshua Qiang</creatorcontrib><creatorcontrib>Peters, Walt</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of bridge engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Guolong</au><au>Wang, Kelvin C. P</au><au>Yang, Guangwei</au><au>Liu, Yang</au><au>Li, Joshua Qiang</au><au>Peters, Walt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nondestructive Bridge Deck Evaluation Using Sub-mm 3D Laser Imaging Technology at Highway Speeds</atitle><jtitle>Journal of bridge engineering</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>27</volume><issue>6</issue><issn>1084-0702</issn><eissn>1943-5592</eissn><abstract>Abstract Periodic bridge deck inspection is critically important in bridge management and maintenance. This paper presents a comprehensive bridge deck evaluation using sub-mm three-dimensional (3D) laser imaging technology in a nondestructive and efficient manner at highway speeds with complete lane coverage. A total of 58 bridge decks in Oklahoma were evaluated via Pave3D 8K system and 3D Safety Sensor. The Pave3D 8K system collected both 0.5-mm 3D height images, 2D grayscale images, and longitudinal profiler at highway speeds for bridge deck assessment in terms of distress detection and roughness evaluation. A Deep Learning-based method was applied to detect cracks automatically, and a manual tool was developed to label other distress for bridge decks and joints from the obtained images. Further, the 0.5-mm 3D images and longitudinal profiler data were combined to identify locations with roughness issues and the causes on bridge decks or approach slabs. Finally, the 3D Safety Sensor acquired 0.1-mm 2D/3D images for hydroplaning speed prediction of bridge decks. The evaluation results demonstrate the efficacy of the sub-mm 3D laser imaging technology for nondestructive bridge deck conditions and safety evaluations.</abstract><cop>New York</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)BE.1943-5592.0001888</doi><orcidid>https://orcid.org/0000-0002-0870-2440</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1084-0702
ispartof Journal of bridge engineering, 2022-06, Vol.27 (6)
issn 1084-0702
1943-5592
language eng
recordid cdi_proquest_journals_2649281755
source American Society of Civil Engineers:NESLI2:Journals:2014
subjects Bridge construction
Bridge decks
Bridge inspection
Bridge maintenance
Bridges
Civil engineering
Deep learning
Evaluation
Flaw detection
Hand tools
Hydroplaning
Image acquisition
Imaging techniques
Inspection
Joints (timber)
Lasers
Nondestructive testing
Roughness
Safety
Sensors
Slabs
Technical Papers
Technology
Three dimensional imaging
title Nondestructive Bridge Deck Evaluation Using Sub-mm 3D Laser Imaging Technology at Highway Speeds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T05%3A48%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nondestructive%20Bridge%20Deck%20Evaluation%20Using%20Sub-mm%203D%20Laser%20Imaging%20Technology%20at%20Highway%20Speeds&rft.jtitle=Journal%20of%20bridge%20engineering&rft.au=Wang,%20Guolong&rft.date=2022-06-01&rft.volume=27&rft.issue=6&rft.issn=1084-0702&rft.eissn=1943-5592&rft_id=info:doi/10.1061/(ASCE)BE.1943-5592.0001888&rft_dat=%3Cproquest_cross%3E2649281755%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2649281755&rft_id=info:pmid/&rfr_iscdi=true