MoS2 nanosheets with expanded interlayer spacing for ultra-stable aqueous Mg-ion hybrid supercapacitor

Aqueous magnesium ion supercapacitors (MISs) have attracted attention due to their safety, low cost and environmental friendliness. However, the cycling stability of MISs is usually not ideal due to magnesium ion plating in/stripping from the negative electrode materials. Here, we demonstrate that M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry frontiers 2022-02, Vol.9 (8), p.1666-1673
Hauptverfasser: Pan, Guodong, Li, Junfeng, Lu, Han, Peng, Wenwu, Xu, Xingtao, Lu, Ting, Amin, Mohammed A, Yamauchi, Yusuke, Xu, Min, Pan, Likun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1673
container_issue 8
container_start_page 1666
container_title Inorganic chemistry frontiers
container_volume 9
creator Pan, Guodong
Li, Junfeng
Lu, Han
Peng, Wenwu
Xu, Xingtao
Lu, Ting
Amin, Mohammed A
Yamauchi, Yusuke
Xu, Min
Pan, Likun
description Aqueous magnesium ion supercapacitors (MISs) have attracted attention due to their safety, low cost and environmental friendliness. However, the cycling stability of MISs is usually not ideal due to magnesium ion plating in/stripping from the negative electrode materials. Here, we demonstrate that MoS2 with expanded interlayer spacing (E-MoS2), obtained via a facile method, is a prospective negative electrode material for rechargeable MISs, because the expanded layer spacing reduces ion diffusion resistance and provides more active sites for ion interaction. The specific capacitance of the E-MoS2 electrode (165.6 F g−1) is much higher than that of unmodified MoS2 (79.0 F g−1) at 0.5 A g−1. Importantly, after 30 000 cycles, the E-MoS2-based MIS has an ultralong cycling life with a capacitance retention of 93.8% at 5 A g−1, which is comparable with conventional solid-state capacitors. This strategy provides an effective method to design high-performance electrode material for MISs.
doi_str_mv 10.1039/d1qi01613j
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2649214814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2649214814</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-8da90785aad4db13ab409492808b14774eae375798c8b65749e5fa0d88222d043</originalsourceid><addsrcrecordid>eNo9jk1LAzEYhIMoWGov_oKA59V8NslRil_Q4kE9lzebbJuyJNski_bfu6J4mmFgnhmErim5pYSbO0ePgdAl5YczNGNEsoZKyc__vZCXaFFKsGQKiKFEzVC3SW8MR4ip7L2vBX-Gusf-a4DovMMhVp97OPmMywBtiDvcpYzHvmZoSgXbewzH0aex4M2uCSni_cnm4HAZB59b-CnVlK_QRQd98Ys_naOPx4f31XOzfn16Wd2vm4FqXhvtwBClJYATzlIOVhAjDNNEWyqUEh48V1IZ3Wq7lEoYLzsgTmvGmCOCz9HNL3fIabpV6vaQxhynyS1bTiAqNBX8G5dlWXk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649214814</pqid></control><display><type>article</type><title>MoS2 nanosheets with expanded interlayer spacing for ultra-stable aqueous Mg-ion hybrid supercapacitor</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Pan, Guodong ; Li, Junfeng ; Lu, Han ; Peng, Wenwu ; Xu, Xingtao ; Lu, Ting ; Amin, Mohammed A ; Yamauchi, Yusuke ; Xu, Min ; Pan, Likun</creator><creatorcontrib>Pan, Guodong ; Li, Junfeng ; Lu, Han ; Peng, Wenwu ; Xu, Xingtao ; Lu, Ting ; Amin, Mohammed A ; Yamauchi, Yusuke ; Xu, Min ; Pan, Likun</creatorcontrib><description>Aqueous magnesium ion supercapacitors (MISs) have attracted attention due to their safety, low cost and environmental friendliness. However, the cycling stability of MISs is usually not ideal due to magnesium ion plating in/stripping from the negative electrode materials. Here, we demonstrate that MoS2 with expanded interlayer spacing (E-MoS2), obtained via a facile method, is a prospective negative electrode material for rechargeable MISs, because the expanded layer spacing reduces ion diffusion resistance and provides more active sites for ion interaction. The specific capacitance of the E-MoS2 electrode (165.6 F g−1) is much higher than that of unmodified MoS2 (79.0 F g−1) at 0.5 A g−1. Importantly, after 30 000 cycles, the E-MoS2-based MIS has an ultralong cycling life with a capacitance retention of 93.8% at 5 A g−1, which is comparable with conventional solid-state capacitors. This strategy provides an effective method to design high-performance electrode material for MISs.</description><identifier>ISSN: 2052-1545</identifier><identifier>EISSN: 2052-1553</identifier><identifier>DOI: 10.1039/d1qi01613j</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Capacitance ; Cycles ; Diffusion layers ; Electrode materials ; Electrodes ; Inorganic chemistry ; Interlayers ; Ion diffusion ; Ion plating ; Magnesium ; Molybdenum disulfide ; Nanosheets ; Supercapacitors</subject><ispartof>Inorganic chemistry frontiers, 2022-02, Vol.9 (8), p.1666-1673</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Pan, Guodong</creatorcontrib><creatorcontrib>Li, Junfeng</creatorcontrib><creatorcontrib>Lu, Han</creatorcontrib><creatorcontrib>Peng, Wenwu</creatorcontrib><creatorcontrib>Xu, Xingtao</creatorcontrib><creatorcontrib>Lu, Ting</creatorcontrib><creatorcontrib>Amin, Mohammed A</creatorcontrib><creatorcontrib>Yamauchi, Yusuke</creatorcontrib><creatorcontrib>Xu, Min</creatorcontrib><creatorcontrib>Pan, Likun</creatorcontrib><title>MoS2 nanosheets with expanded interlayer spacing for ultra-stable aqueous Mg-ion hybrid supercapacitor</title><title>Inorganic chemistry frontiers</title><description>Aqueous magnesium ion supercapacitors (MISs) have attracted attention due to their safety, low cost and environmental friendliness. However, the cycling stability of MISs is usually not ideal due to magnesium ion plating in/stripping from the negative electrode materials. Here, we demonstrate that MoS2 with expanded interlayer spacing (E-MoS2), obtained via a facile method, is a prospective negative electrode material for rechargeable MISs, because the expanded layer spacing reduces ion diffusion resistance and provides more active sites for ion interaction. The specific capacitance of the E-MoS2 electrode (165.6 F g−1) is much higher than that of unmodified MoS2 (79.0 F g−1) at 0.5 A g−1. Importantly, after 30 000 cycles, the E-MoS2-based MIS has an ultralong cycling life with a capacitance retention of 93.8% at 5 A g−1, which is comparable with conventional solid-state capacitors. This strategy provides an effective method to design high-performance electrode material for MISs.</description><subject>Capacitance</subject><subject>Cycles</subject><subject>Diffusion layers</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Inorganic chemistry</subject><subject>Interlayers</subject><subject>Ion diffusion</subject><subject>Ion plating</subject><subject>Magnesium</subject><subject>Molybdenum disulfide</subject><subject>Nanosheets</subject><subject>Supercapacitors</subject><issn>2052-1545</issn><issn>2052-1553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9jk1LAzEYhIMoWGov_oKA59V8NslRil_Q4kE9lzebbJuyJNski_bfu6J4mmFgnhmErim5pYSbO0ePgdAl5YczNGNEsoZKyc__vZCXaFFKsGQKiKFEzVC3SW8MR4ip7L2vBX-Gusf-a4DovMMhVp97OPmMywBtiDvcpYzHvmZoSgXbewzH0aex4M2uCSni_cnm4HAZB59b-CnVlK_QRQd98Ys_naOPx4f31XOzfn16Wd2vm4FqXhvtwBClJYATzlIOVhAjDNNEWyqUEh48V1IZ3Wq7lEoYLzsgTmvGmCOCz9HNL3fIabpV6vaQxhynyS1bTiAqNBX8G5dlWXk</recordid><startdate>20220218</startdate><enddate>20220218</enddate><creator>Pan, Guodong</creator><creator>Li, Junfeng</creator><creator>Lu, Han</creator><creator>Peng, Wenwu</creator><creator>Xu, Xingtao</creator><creator>Lu, Ting</creator><creator>Amin, Mohammed A</creator><creator>Yamauchi, Yusuke</creator><creator>Xu, Min</creator><creator>Pan, Likun</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20220218</creationdate><title>MoS2 nanosheets with expanded interlayer spacing for ultra-stable aqueous Mg-ion hybrid supercapacitor</title><author>Pan, Guodong ; Li, Junfeng ; Lu, Han ; Peng, Wenwu ; Xu, Xingtao ; Lu, Ting ; Amin, Mohammed A ; Yamauchi, Yusuke ; Xu, Min ; Pan, Likun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-8da90785aad4db13ab409492808b14774eae375798c8b65749e5fa0d88222d043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Capacitance</topic><topic>Cycles</topic><topic>Diffusion layers</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Inorganic chemistry</topic><topic>Interlayers</topic><topic>Ion diffusion</topic><topic>Ion plating</topic><topic>Magnesium</topic><topic>Molybdenum disulfide</topic><topic>Nanosheets</topic><topic>Supercapacitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Guodong</creatorcontrib><creatorcontrib>Li, Junfeng</creatorcontrib><creatorcontrib>Lu, Han</creatorcontrib><creatorcontrib>Peng, Wenwu</creatorcontrib><creatorcontrib>Xu, Xingtao</creatorcontrib><creatorcontrib>Lu, Ting</creatorcontrib><creatorcontrib>Amin, Mohammed A</creatorcontrib><creatorcontrib>Yamauchi, Yusuke</creatorcontrib><creatorcontrib>Xu, Min</creatorcontrib><creatorcontrib>Pan, Likun</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Inorganic chemistry frontiers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Guodong</au><au>Li, Junfeng</au><au>Lu, Han</au><au>Peng, Wenwu</au><au>Xu, Xingtao</au><au>Lu, Ting</au><au>Amin, Mohammed A</au><au>Yamauchi, Yusuke</au><au>Xu, Min</au><au>Pan, Likun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MoS2 nanosheets with expanded interlayer spacing for ultra-stable aqueous Mg-ion hybrid supercapacitor</atitle><jtitle>Inorganic chemistry frontiers</jtitle><date>2022-02-18</date><risdate>2022</risdate><volume>9</volume><issue>8</issue><spage>1666</spage><epage>1673</epage><pages>1666-1673</pages><issn>2052-1545</issn><eissn>2052-1553</eissn><abstract>Aqueous magnesium ion supercapacitors (MISs) have attracted attention due to their safety, low cost and environmental friendliness. However, the cycling stability of MISs is usually not ideal due to magnesium ion plating in/stripping from the negative electrode materials. Here, we demonstrate that MoS2 with expanded interlayer spacing (E-MoS2), obtained via a facile method, is a prospective negative electrode material for rechargeable MISs, because the expanded layer spacing reduces ion diffusion resistance and provides more active sites for ion interaction. The specific capacitance of the E-MoS2 electrode (165.6 F g−1) is much higher than that of unmodified MoS2 (79.0 F g−1) at 0.5 A g−1. Importantly, after 30 000 cycles, the E-MoS2-based MIS has an ultralong cycling life with a capacitance retention of 93.8% at 5 A g−1, which is comparable with conventional solid-state capacitors. This strategy provides an effective method to design high-performance electrode material for MISs.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1qi01613j</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2052-1545
ispartof Inorganic chemistry frontiers, 2022-02, Vol.9 (8), p.1666-1673
issn 2052-1545
2052-1553
language eng
recordid cdi_proquest_journals_2649214814
source Royal Society Of Chemistry Journals 2008-
subjects Capacitance
Cycles
Diffusion layers
Electrode materials
Electrodes
Inorganic chemistry
Interlayers
Ion diffusion
Ion plating
Magnesium
Molybdenum disulfide
Nanosheets
Supercapacitors
title MoS2 nanosheets with expanded interlayer spacing for ultra-stable aqueous Mg-ion hybrid supercapacitor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T16%3A06%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MoS2%20nanosheets%20with%20expanded%20interlayer%20spacing%20for%20ultra-stable%20aqueous%20Mg-ion%20hybrid%20supercapacitor&rft.jtitle=Inorganic%20chemistry%20frontiers&rft.au=Pan,%20Guodong&rft.date=2022-02-18&rft.volume=9&rft.issue=8&rft.spage=1666&rft.epage=1673&rft.pages=1666-1673&rft.issn=2052-1545&rft.eissn=2052-1553&rft_id=info:doi/10.1039/d1qi01613j&rft_dat=%3Cproquest%3E2649214814%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2649214814&rft_id=info:pmid/&rfr_iscdi=true