MoS2 nanosheets with expanded interlayer spacing for ultra-stable aqueous Mg-ion hybrid supercapacitor
Aqueous magnesium ion supercapacitors (MISs) have attracted attention due to their safety, low cost and environmental friendliness. However, the cycling stability of MISs is usually not ideal due to magnesium ion plating in/stripping from the negative electrode materials. Here, we demonstrate that M...
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry frontiers 2022-02, Vol.9 (8), p.1666-1673 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1673 |
---|---|
container_issue | 8 |
container_start_page | 1666 |
container_title | Inorganic chemistry frontiers |
container_volume | 9 |
creator | Pan, Guodong Li, Junfeng Lu, Han Peng, Wenwu Xu, Xingtao Lu, Ting Amin, Mohammed A Yamauchi, Yusuke Xu, Min Pan, Likun |
description | Aqueous magnesium ion supercapacitors (MISs) have attracted attention due to their safety, low cost and environmental friendliness. However, the cycling stability of MISs is usually not ideal due to magnesium ion plating in/stripping from the negative electrode materials. Here, we demonstrate that MoS2 with expanded interlayer spacing (E-MoS2), obtained via a facile method, is a prospective negative electrode material for rechargeable MISs, because the expanded layer spacing reduces ion diffusion resistance and provides more active sites for ion interaction. The specific capacitance of the E-MoS2 electrode (165.6 F g−1) is much higher than that of unmodified MoS2 (79.0 F g−1) at 0.5 A g−1. Importantly, after 30 000 cycles, the E-MoS2-based MIS has an ultralong cycling life with a capacitance retention of 93.8% at 5 A g−1, which is comparable with conventional solid-state capacitors. This strategy provides an effective method to design high-performance electrode material for MISs. |
doi_str_mv | 10.1039/d1qi01613j |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2649214814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2649214814</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-8da90785aad4db13ab409492808b14774eae375798c8b65749e5fa0d88222d043</originalsourceid><addsrcrecordid>eNo9jk1LAzEYhIMoWGov_oKA59V8NslRil_Q4kE9lzebbJuyJNski_bfu6J4mmFgnhmErim5pYSbO0ePgdAl5YczNGNEsoZKyc__vZCXaFFKsGQKiKFEzVC3SW8MR4ip7L2vBX-Gusf-a4DovMMhVp97OPmMywBtiDvcpYzHvmZoSgXbewzH0aex4M2uCSni_cnm4HAZB59b-CnVlK_QRQd98Ys_naOPx4f31XOzfn16Wd2vm4FqXhvtwBClJYATzlIOVhAjDNNEWyqUEh48V1IZ3Wq7lEoYLzsgTmvGmCOCz9HNL3fIabpV6vaQxhynyS1bTiAqNBX8G5dlWXk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649214814</pqid></control><display><type>article</type><title>MoS2 nanosheets with expanded interlayer spacing for ultra-stable aqueous Mg-ion hybrid supercapacitor</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Pan, Guodong ; Li, Junfeng ; Lu, Han ; Peng, Wenwu ; Xu, Xingtao ; Lu, Ting ; Amin, Mohammed A ; Yamauchi, Yusuke ; Xu, Min ; Pan, Likun</creator><creatorcontrib>Pan, Guodong ; Li, Junfeng ; Lu, Han ; Peng, Wenwu ; Xu, Xingtao ; Lu, Ting ; Amin, Mohammed A ; Yamauchi, Yusuke ; Xu, Min ; Pan, Likun</creatorcontrib><description>Aqueous magnesium ion supercapacitors (MISs) have attracted attention due to their safety, low cost and environmental friendliness. However, the cycling stability of MISs is usually not ideal due to magnesium ion plating in/stripping from the negative electrode materials. Here, we demonstrate that MoS2 with expanded interlayer spacing (E-MoS2), obtained via a facile method, is a prospective negative electrode material for rechargeable MISs, because the expanded layer spacing reduces ion diffusion resistance and provides more active sites for ion interaction. The specific capacitance of the E-MoS2 electrode (165.6 F g−1) is much higher than that of unmodified MoS2 (79.0 F g−1) at 0.5 A g−1. Importantly, after 30 000 cycles, the E-MoS2-based MIS has an ultralong cycling life with a capacitance retention of 93.8% at 5 A g−1, which is comparable with conventional solid-state capacitors. This strategy provides an effective method to design high-performance electrode material for MISs.</description><identifier>ISSN: 2052-1545</identifier><identifier>EISSN: 2052-1553</identifier><identifier>DOI: 10.1039/d1qi01613j</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Capacitance ; Cycles ; Diffusion layers ; Electrode materials ; Electrodes ; Inorganic chemistry ; Interlayers ; Ion diffusion ; Ion plating ; Magnesium ; Molybdenum disulfide ; Nanosheets ; Supercapacitors</subject><ispartof>Inorganic chemistry frontiers, 2022-02, Vol.9 (8), p.1666-1673</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Pan, Guodong</creatorcontrib><creatorcontrib>Li, Junfeng</creatorcontrib><creatorcontrib>Lu, Han</creatorcontrib><creatorcontrib>Peng, Wenwu</creatorcontrib><creatorcontrib>Xu, Xingtao</creatorcontrib><creatorcontrib>Lu, Ting</creatorcontrib><creatorcontrib>Amin, Mohammed A</creatorcontrib><creatorcontrib>Yamauchi, Yusuke</creatorcontrib><creatorcontrib>Xu, Min</creatorcontrib><creatorcontrib>Pan, Likun</creatorcontrib><title>MoS2 nanosheets with expanded interlayer spacing for ultra-stable aqueous Mg-ion hybrid supercapacitor</title><title>Inorganic chemistry frontiers</title><description>Aqueous magnesium ion supercapacitors (MISs) have attracted attention due to their safety, low cost and environmental friendliness. However, the cycling stability of MISs is usually not ideal due to magnesium ion plating in/stripping from the negative electrode materials. Here, we demonstrate that MoS2 with expanded interlayer spacing (E-MoS2), obtained via a facile method, is a prospective negative electrode material for rechargeable MISs, because the expanded layer spacing reduces ion diffusion resistance and provides more active sites for ion interaction. The specific capacitance of the E-MoS2 electrode (165.6 F g−1) is much higher than that of unmodified MoS2 (79.0 F g−1) at 0.5 A g−1. Importantly, after 30 000 cycles, the E-MoS2-based MIS has an ultralong cycling life with a capacitance retention of 93.8% at 5 A g−1, which is comparable with conventional solid-state capacitors. This strategy provides an effective method to design high-performance electrode material for MISs.</description><subject>Capacitance</subject><subject>Cycles</subject><subject>Diffusion layers</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Inorganic chemistry</subject><subject>Interlayers</subject><subject>Ion diffusion</subject><subject>Ion plating</subject><subject>Magnesium</subject><subject>Molybdenum disulfide</subject><subject>Nanosheets</subject><subject>Supercapacitors</subject><issn>2052-1545</issn><issn>2052-1553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9jk1LAzEYhIMoWGov_oKA59V8NslRil_Q4kE9lzebbJuyJNski_bfu6J4mmFgnhmErim5pYSbO0ePgdAl5YczNGNEsoZKyc__vZCXaFFKsGQKiKFEzVC3SW8MR4ip7L2vBX-Gusf-a4DovMMhVp97OPmMywBtiDvcpYzHvmZoSgXbewzH0aex4M2uCSni_cnm4HAZB59b-CnVlK_QRQd98Ys_naOPx4f31XOzfn16Wd2vm4FqXhvtwBClJYATzlIOVhAjDNNEWyqUEh48V1IZ3Wq7lEoYLzsgTmvGmCOCz9HNL3fIabpV6vaQxhynyS1bTiAqNBX8G5dlWXk</recordid><startdate>20220218</startdate><enddate>20220218</enddate><creator>Pan, Guodong</creator><creator>Li, Junfeng</creator><creator>Lu, Han</creator><creator>Peng, Wenwu</creator><creator>Xu, Xingtao</creator><creator>Lu, Ting</creator><creator>Amin, Mohammed A</creator><creator>Yamauchi, Yusuke</creator><creator>Xu, Min</creator><creator>Pan, Likun</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20220218</creationdate><title>MoS2 nanosheets with expanded interlayer spacing for ultra-stable aqueous Mg-ion hybrid supercapacitor</title><author>Pan, Guodong ; Li, Junfeng ; Lu, Han ; Peng, Wenwu ; Xu, Xingtao ; Lu, Ting ; Amin, Mohammed A ; Yamauchi, Yusuke ; Xu, Min ; Pan, Likun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-8da90785aad4db13ab409492808b14774eae375798c8b65749e5fa0d88222d043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Capacitance</topic><topic>Cycles</topic><topic>Diffusion layers</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Inorganic chemistry</topic><topic>Interlayers</topic><topic>Ion diffusion</topic><topic>Ion plating</topic><topic>Magnesium</topic><topic>Molybdenum disulfide</topic><topic>Nanosheets</topic><topic>Supercapacitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Guodong</creatorcontrib><creatorcontrib>Li, Junfeng</creatorcontrib><creatorcontrib>Lu, Han</creatorcontrib><creatorcontrib>Peng, Wenwu</creatorcontrib><creatorcontrib>Xu, Xingtao</creatorcontrib><creatorcontrib>Lu, Ting</creatorcontrib><creatorcontrib>Amin, Mohammed A</creatorcontrib><creatorcontrib>Yamauchi, Yusuke</creatorcontrib><creatorcontrib>Xu, Min</creatorcontrib><creatorcontrib>Pan, Likun</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Inorganic chemistry frontiers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Guodong</au><au>Li, Junfeng</au><au>Lu, Han</au><au>Peng, Wenwu</au><au>Xu, Xingtao</au><au>Lu, Ting</au><au>Amin, Mohammed A</au><au>Yamauchi, Yusuke</au><au>Xu, Min</au><au>Pan, Likun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MoS2 nanosheets with expanded interlayer spacing for ultra-stable aqueous Mg-ion hybrid supercapacitor</atitle><jtitle>Inorganic chemistry frontiers</jtitle><date>2022-02-18</date><risdate>2022</risdate><volume>9</volume><issue>8</issue><spage>1666</spage><epage>1673</epage><pages>1666-1673</pages><issn>2052-1545</issn><eissn>2052-1553</eissn><abstract>Aqueous magnesium ion supercapacitors (MISs) have attracted attention due to their safety, low cost and environmental friendliness. However, the cycling stability of MISs is usually not ideal due to magnesium ion plating in/stripping from the negative electrode materials. Here, we demonstrate that MoS2 with expanded interlayer spacing (E-MoS2), obtained via a facile method, is a prospective negative electrode material for rechargeable MISs, because the expanded layer spacing reduces ion diffusion resistance and provides more active sites for ion interaction. The specific capacitance of the E-MoS2 electrode (165.6 F g−1) is much higher than that of unmodified MoS2 (79.0 F g−1) at 0.5 A g−1. Importantly, after 30 000 cycles, the E-MoS2-based MIS has an ultralong cycling life with a capacitance retention of 93.8% at 5 A g−1, which is comparable with conventional solid-state capacitors. This strategy provides an effective method to design high-performance electrode material for MISs.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1qi01613j</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2052-1545 |
ispartof | Inorganic chemistry frontiers, 2022-02, Vol.9 (8), p.1666-1673 |
issn | 2052-1545 2052-1553 |
language | eng |
recordid | cdi_proquest_journals_2649214814 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Capacitance Cycles Diffusion layers Electrode materials Electrodes Inorganic chemistry Interlayers Ion diffusion Ion plating Magnesium Molybdenum disulfide Nanosheets Supercapacitors |
title | MoS2 nanosheets with expanded interlayer spacing for ultra-stable aqueous Mg-ion hybrid supercapacitor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T16%3A06%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MoS2%20nanosheets%20with%20expanded%20interlayer%20spacing%20for%20ultra-stable%20aqueous%20Mg-ion%20hybrid%20supercapacitor&rft.jtitle=Inorganic%20chemistry%20frontiers&rft.au=Pan,%20Guodong&rft.date=2022-02-18&rft.volume=9&rft.issue=8&rft.spage=1666&rft.epage=1673&rft.pages=1666-1673&rft.issn=2052-1545&rft.eissn=2052-1553&rft_id=info:doi/10.1039/d1qi01613j&rft_dat=%3Cproquest%3E2649214814%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2649214814&rft_id=info:pmid/&rfr_iscdi=true |