Broad-learning recurrent Hermite neural control for unknown nonlinear systems

The broad-learning systems (BLS) with advance control theories have been studied, but found to have two disadvantages: one is that the calculations are too complicated and the other is that the convergence time cannot be guaranteed. In order to mitigate the high computational loading, this study pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems 2022-04, Vol.242, p.108263, Article 108263
Hauptverfasser: Hsu, Chun-Fei, Chen, Bo-Rui, Wu, Bing-Fei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 108263
container_title Knowledge-based systems
container_volume 242
creator Hsu, Chun-Fei
Chen, Bo-Rui
Wu, Bing-Fei
description The broad-learning systems (BLS) with advance control theories have been studied, but found to have two disadvantages: one is that the calculations are too complicated and the other is that the convergence time cannot be guaranteed. In order to mitigate the high computational loading, this study proposes a broad-learning Hermite neural network (BHNN), which has the capability of dynamic mapping and reduces the structural complexity of neural network. Meanwhile, a broad-learning recurrent Hermite neural control (BRHNC) system is proposed while maintaining finite-time stability to speed up the tracking error convergence. The proposed BRHNC system comprises two controllers: a recurrent broad controller that utilizes a BHNN to approximate on-line an ideal finite-time controller and a robust exponential controller that ensures system stability through a Lyapunov function. Meanwhile, the BHNN’s full-tuned parameter learning laws are developed to increase the approximating capacity, learning capacity and accuracy using gradient descent method. Finally, simulation and experimental results show that the BRHNC system has good control, tracking and disturbance rejection properties, while the BRHNC system requires no prior knowledge about the system dynamics.
doi_str_mv 10.1016/j.knosys.2022.108263
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2649194208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705122000831</els_id><sourcerecordid>2649194208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-a4c2328239c1340baa2b1ce7085eeba2236e47827544c7ef8aefe2ba0cd6e2a63</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gYuA64659bYRVNQRRtzoOqTpqaR2kvGkVebtzVDXrg78_BfOR8glZyvOeHHdrz59iPu4EkyIJFWikEdkwatSZKVi9TFZsDpnWclyfkrOYuwZS05eLcjLHQbTZgMY9M5_UAQ7IYIf6Rpw60agHiY0A7XBjxgG2gWkk097P5764AfnU5Sm8RG28ZycdGaIcPF3l-T98eHtfp1tXp-e7283mZVSjZlRVkhRCVlbLhVrjBENt1CyKgdojBCyAFVWosyVsiV0lYEORGOYbQsQppBLcjX37jB8TRBH3YcJfZrUolA1r5VgVXKp2WUxxIjQ6R26rcG95kwfwOlez-D0AZyewaXYzRyD9MG3A9TROvAWWpfojLoN7v-CX_4oehI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649194208</pqid></control><display><type>article</type><title>Broad-learning recurrent Hermite neural control for unknown nonlinear systems</title><source>Elsevier ScienceDirect Journals</source><creator>Hsu, Chun-Fei ; Chen, Bo-Rui ; Wu, Bing-Fei</creator><creatorcontrib>Hsu, Chun-Fei ; Chen, Bo-Rui ; Wu, Bing-Fei</creatorcontrib><description>The broad-learning systems (BLS) with advance control theories have been studied, but found to have two disadvantages: one is that the calculations are too complicated and the other is that the convergence time cannot be guaranteed. In order to mitigate the high computational loading, this study proposes a broad-learning Hermite neural network (BHNN), which has the capability of dynamic mapping and reduces the structural complexity of neural network. Meanwhile, a broad-learning recurrent Hermite neural control (BRHNC) system is proposed while maintaining finite-time stability to speed up the tracking error convergence. The proposed BRHNC system comprises two controllers: a recurrent broad controller that utilizes a BHNN to approximate on-line an ideal finite-time controller and a robust exponential controller that ensures system stability through a Lyapunov function. Meanwhile, the BHNN’s full-tuned parameter learning laws are developed to increase the approximating capacity, learning capacity and accuracy using gradient descent method. Finally, simulation and experimental results show that the BRHNC system has good control, tracking and disturbance rejection properties, while the BRHNC system requires no prior knowledge about the system dynamics.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2022.108263</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Broad-learning system ; Control systems ; Controllers ; Convergence ; Finite-time convergence ; Learning ; Liapunov functions ; Neural networks ; Nonlinear control ; Nonlinear systems ; Parameter learning ; Recurrent neural network ; Robust control ; Stability analysis ; System dynamics ; Systems stability ; Tracking control ; Tracking errors</subject><ispartof>Knowledge-based systems, 2022-04, Vol.242, p.108263, Article 108263</ispartof><rights>2022</rights><rights>Copyright Elsevier Science Ltd. Apr 22, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-a4c2328239c1340baa2b1ce7085eeba2236e47827544c7ef8aefe2ba0cd6e2a63</citedby><cites>FETCH-LOGICAL-c334t-a4c2328239c1340baa2b1ce7085eeba2236e47827544c7ef8aefe2ba0cd6e2a63</cites><orcidid>0000-0002-1950-8774</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0950705122000831$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Hsu, Chun-Fei</creatorcontrib><creatorcontrib>Chen, Bo-Rui</creatorcontrib><creatorcontrib>Wu, Bing-Fei</creatorcontrib><title>Broad-learning recurrent Hermite neural control for unknown nonlinear systems</title><title>Knowledge-based systems</title><description>The broad-learning systems (BLS) with advance control theories have been studied, but found to have two disadvantages: one is that the calculations are too complicated and the other is that the convergence time cannot be guaranteed. In order to mitigate the high computational loading, this study proposes a broad-learning Hermite neural network (BHNN), which has the capability of dynamic mapping and reduces the structural complexity of neural network. Meanwhile, a broad-learning recurrent Hermite neural control (BRHNC) system is proposed while maintaining finite-time stability to speed up the tracking error convergence. The proposed BRHNC system comprises two controllers: a recurrent broad controller that utilizes a BHNN to approximate on-line an ideal finite-time controller and a robust exponential controller that ensures system stability through a Lyapunov function. Meanwhile, the BHNN’s full-tuned parameter learning laws are developed to increase the approximating capacity, learning capacity and accuracy using gradient descent method. Finally, simulation and experimental results show that the BRHNC system has good control, tracking and disturbance rejection properties, while the BRHNC system requires no prior knowledge about the system dynamics.</description><subject>Broad-learning system</subject><subject>Control systems</subject><subject>Controllers</subject><subject>Convergence</subject><subject>Finite-time convergence</subject><subject>Learning</subject><subject>Liapunov functions</subject><subject>Neural networks</subject><subject>Nonlinear control</subject><subject>Nonlinear systems</subject><subject>Parameter learning</subject><subject>Recurrent neural network</subject><subject>Robust control</subject><subject>Stability analysis</subject><subject>System dynamics</subject><subject>Systems stability</subject><subject>Tracking control</subject><subject>Tracking errors</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI6-gYuA64659bYRVNQRRtzoOqTpqaR2kvGkVebtzVDXrg78_BfOR8glZyvOeHHdrz59iPu4EkyIJFWikEdkwatSZKVi9TFZsDpnWclyfkrOYuwZS05eLcjLHQbTZgMY9M5_UAQ7IYIf6Rpw60agHiY0A7XBjxgG2gWkk097P5764AfnU5Sm8RG28ZycdGaIcPF3l-T98eHtfp1tXp-e7283mZVSjZlRVkhRCVlbLhVrjBENt1CyKgdojBCyAFVWosyVsiV0lYEORGOYbQsQppBLcjX37jB8TRBH3YcJfZrUolA1r5VgVXKp2WUxxIjQ6R26rcG95kwfwOlez-D0AZyewaXYzRyD9MG3A9TROvAWWpfojLoN7v-CX_4oehI</recordid><startdate>20220422</startdate><enddate>20220422</enddate><creator>Hsu, Chun-Fei</creator><creator>Chen, Bo-Rui</creator><creator>Wu, Bing-Fei</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1950-8774</orcidid></search><sort><creationdate>20220422</creationdate><title>Broad-learning recurrent Hermite neural control for unknown nonlinear systems</title><author>Hsu, Chun-Fei ; Chen, Bo-Rui ; Wu, Bing-Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-a4c2328239c1340baa2b1ce7085eeba2236e47827544c7ef8aefe2ba0cd6e2a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Broad-learning system</topic><topic>Control systems</topic><topic>Controllers</topic><topic>Convergence</topic><topic>Finite-time convergence</topic><topic>Learning</topic><topic>Liapunov functions</topic><topic>Neural networks</topic><topic>Nonlinear control</topic><topic>Nonlinear systems</topic><topic>Parameter learning</topic><topic>Recurrent neural network</topic><topic>Robust control</topic><topic>Stability analysis</topic><topic>System dynamics</topic><topic>Systems stability</topic><topic>Tracking control</topic><topic>Tracking errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsu, Chun-Fei</creatorcontrib><creatorcontrib>Chen, Bo-Rui</creatorcontrib><creatorcontrib>Wu, Bing-Fei</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsu, Chun-Fei</au><au>Chen, Bo-Rui</au><au>Wu, Bing-Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Broad-learning recurrent Hermite neural control for unknown nonlinear systems</atitle><jtitle>Knowledge-based systems</jtitle><date>2022-04-22</date><risdate>2022</risdate><volume>242</volume><spage>108263</spage><pages>108263-</pages><artnum>108263</artnum><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>The broad-learning systems (BLS) with advance control theories have been studied, but found to have two disadvantages: one is that the calculations are too complicated and the other is that the convergence time cannot be guaranteed. In order to mitigate the high computational loading, this study proposes a broad-learning Hermite neural network (BHNN), which has the capability of dynamic mapping and reduces the structural complexity of neural network. Meanwhile, a broad-learning recurrent Hermite neural control (BRHNC) system is proposed while maintaining finite-time stability to speed up the tracking error convergence. The proposed BRHNC system comprises two controllers: a recurrent broad controller that utilizes a BHNN to approximate on-line an ideal finite-time controller and a robust exponential controller that ensures system stability through a Lyapunov function. Meanwhile, the BHNN’s full-tuned parameter learning laws are developed to increase the approximating capacity, learning capacity and accuracy using gradient descent method. Finally, simulation and experimental results show that the BRHNC system has good control, tracking and disturbance rejection properties, while the BRHNC system requires no prior knowledge about the system dynamics.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2022.108263</doi><orcidid>https://orcid.org/0000-0002-1950-8774</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0950-7051
ispartof Knowledge-based systems, 2022-04, Vol.242, p.108263, Article 108263
issn 0950-7051
1872-7409
language eng
recordid cdi_proquest_journals_2649194208
source Elsevier ScienceDirect Journals
subjects Broad-learning system
Control systems
Controllers
Convergence
Finite-time convergence
Learning
Liapunov functions
Neural networks
Nonlinear control
Nonlinear systems
Parameter learning
Recurrent neural network
Robust control
Stability analysis
System dynamics
Systems stability
Tracking control
Tracking errors
title Broad-learning recurrent Hermite neural control for unknown nonlinear systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A06%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Broad-learning%20recurrent%20Hermite%20neural%20control%20for%20unknown%20nonlinear%20systems&rft.jtitle=Knowledge-based%20systems&rft.au=Hsu,%20Chun-Fei&rft.date=2022-04-22&rft.volume=242&rft.spage=108263&rft.pages=108263-&rft.artnum=108263&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2022.108263&rft_dat=%3Cproquest_cross%3E2649194208%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2649194208&rft_id=info:pmid/&rft_els_id=S0950705122000831&rfr_iscdi=true