Broad-learning recurrent Hermite neural control for unknown nonlinear systems
The broad-learning systems (BLS) with advance control theories have been studied, but found to have two disadvantages: one is that the calculations are too complicated and the other is that the convergence time cannot be guaranteed. In order to mitigate the high computational loading, this study pro...
Gespeichert in:
Veröffentlicht in: | Knowledge-based systems 2022-04, Vol.242, p.108263, Article 108263 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 108263 |
container_title | Knowledge-based systems |
container_volume | 242 |
creator | Hsu, Chun-Fei Chen, Bo-Rui Wu, Bing-Fei |
description | The broad-learning systems (BLS) with advance control theories have been studied, but found to have two disadvantages: one is that the calculations are too complicated and the other is that the convergence time cannot be guaranteed. In order to mitigate the high computational loading, this study proposes a broad-learning Hermite neural network (BHNN), which has the capability of dynamic mapping and reduces the structural complexity of neural network. Meanwhile, a broad-learning recurrent Hermite neural control (BRHNC) system is proposed while maintaining finite-time stability to speed up the tracking error convergence. The proposed BRHNC system comprises two controllers: a recurrent broad controller that utilizes a BHNN to approximate on-line an ideal finite-time controller and a robust exponential controller that ensures system stability through a Lyapunov function. Meanwhile, the BHNN’s full-tuned parameter learning laws are developed to increase the approximating capacity, learning capacity and accuracy using gradient descent method. Finally, simulation and experimental results show that the BRHNC system has good control, tracking and disturbance rejection properties, while the BRHNC system requires no prior knowledge about the system dynamics. |
doi_str_mv | 10.1016/j.knosys.2022.108263 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2649194208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705122000831</els_id><sourcerecordid>2649194208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-a4c2328239c1340baa2b1ce7085eeba2236e47827544c7ef8aefe2ba0cd6e2a63</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gYuA64659bYRVNQRRtzoOqTpqaR2kvGkVebtzVDXrg78_BfOR8glZyvOeHHdrz59iPu4EkyIJFWikEdkwatSZKVi9TFZsDpnWclyfkrOYuwZS05eLcjLHQbTZgMY9M5_UAQ7IYIf6Rpw60agHiY0A7XBjxgG2gWkk097P5764AfnU5Sm8RG28ZycdGaIcPF3l-T98eHtfp1tXp-e7283mZVSjZlRVkhRCVlbLhVrjBENt1CyKgdojBCyAFVWosyVsiV0lYEORGOYbQsQppBLcjX37jB8TRBH3YcJfZrUolA1r5VgVXKp2WUxxIjQ6R26rcG95kwfwOlez-D0AZyewaXYzRyD9MG3A9TROvAWWpfojLoN7v-CX_4oehI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649194208</pqid></control><display><type>article</type><title>Broad-learning recurrent Hermite neural control for unknown nonlinear systems</title><source>Elsevier ScienceDirect Journals</source><creator>Hsu, Chun-Fei ; Chen, Bo-Rui ; Wu, Bing-Fei</creator><creatorcontrib>Hsu, Chun-Fei ; Chen, Bo-Rui ; Wu, Bing-Fei</creatorcontrib><description>The broad-learning systems (BLS) with advance control theories have been studied, but found to have two disadvantages: one is that the calculations are too complicated and the other is that the convergence time cannot be guaranteed. In order to mitigate the high computational loading, this study proposes a broad-learning Hermite neural network (BHNN), which has the capability of dynamic mapping and reduces the structural complexity of neural network. Meanwhile, a broad-learning recurrent Hermite neural control (BRHNC) system is proposed while maintaining finite-time stability to speed up the tracking error convergence. The proposed BRHNC system comprises two controllers: a recurrent broad controller that utilizes a BHNN to approximate on-line an ideal finite-time controller and a robust exponential controller that ensures system stability through a Lyapunov function. Meanwhile, the BHNN’s full-tuned parameter learning laws are developed to increase the approximating capacity, learning capacity and accuracy using gradient descent method. Finally, simulation and experimental results show that the BRHNC system has good control, tracking and disturbance rejection properties, while the BRHNC system requires no prior knowledge about the system dynamics.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2022.108263</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Broad-learning system ; Control systems ; Controllers ; Convergence ; Finite-time convergence ; Learning ; Liapunov functions ; Neural networks ; Nonlinear control ; Nonlinear systems ; Parameter learning ; Recurrent neural network ; Robust control ; Stability analysis ; System dynamics ; Systems stability ; Tracking control ; Tracking errors</subject><ispartof>Knowledge-based systems, 2022-04, Vol.242, p.108263, Article 108263</ispartof><rights>2022</rights><rights>Copyright Elsevier Science Ltd. Apr 22, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-a4c2328239c1340baa2b1ce7085eeba2236e47827544c7ef8aefe2ba0cd6e2a63</citedby><cites>FETCH-LOGICAL-c334t-a4c2328239c1340baa2b1ce7085eeba2236e47827544c7ef8aefe2ba0cd6e2a63</cites><orcidid>0000-0002-1950-8774</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0950705122000831$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Hsu, Chun-Fei</creatorcontrib><creatorcontrib>Chen, Bo-Rui</creatorcontrib><creatorcontrib>Wu, Bing-Fei</creatorcontrib><title>Broad-learning recurrent Hermite neural control for unknown nonlinear systems</title><title>Knowledge-based systems</title><description>The broad-learning systems (BLS) with advance control theories have been studied, but found to have two disadvantages: one is that the calculations are too complicated and the other is that the convergence time cannot be guaranteed. In order to mitigate the high computational loading, this study proposes a broad-learning Hermite neural network (BHNN), which has the capability of dynamic mapping and reduces the structural complexity of neural network. Meanwhile, a broad-learning recurrent Hermite neural control (BRHNC) system is proposed while maintaining finite-time stability to speed up the tracking error convergence. The proposed BRHNC system comprises two controllers: a recurrent broad controller that utilizes a BHNN to approximate on-line an ideal finite-time controller and a robust exponential controller that ensures system stability through a Lyapunov function. Meanwhile, the BHNN’s full-tuned parameter learning laws are developed to increase the approximating capacity, learning capacity and accuracy using gradient descent method. Finally, simulation and experimental results show that the BRHNC system has good control, tracking and disturbance rejection properties, while the BRHNC system requires no prior knowledge about the system dynamics.</description><subject>Broad-learning system</subject><subject>Control systems</subject><subject>Controllers</subject><subject>Convergence</subject><subject>Finite-time convergence</subject><subject>Learning</subject><subject>Liapunov functions</subject><subject>Neural networks</subject><subject>Nonlinear control</subject><subject>Nonlinear systems</subject><subject>Parameter learning</subject><subject>Recurrent neural network</subject><subject>Robust control</subject><subject>Stability analysis</subject><subject>System dynamics</subject><subject>Systems stability</subject><subject>Tracking control</subject><subject>Tracking errors</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI6-gYuA64659bYRVNQRRtzoOqTpqaR2kvGkVebtzVDXrg78_BfOR8glZyvOeHHdrz59iPu4EkyIJFWikEdkwatSZKVi9TFZsDpnWclyfkrOYuwZS05eLcjLHQbTZgMY9M5_UAQ7IYIf6Rpw60agHiY0A7XBjxgG2gWkk097P5764AfnU5Sm8RG28ZycdGaIcPF3l-T98eHtfp1tXp-e7283mZVSjZlRVkhRCVlbLhVrjBENt1CyKgdojBCyAFVWosyVsiV0lYEORGOYbQsQppBLcjX37jB8TRBH3YcJfZrUolA1r5VgVXKp2WUxxIjQ6R26rcG95kwfwOlez-D0AZyewaXYzRyD9MG3A9TROvAWWpfojLoN7v-CX_4oehI</recordid><startdate>20220422</startdate><enddate>20220422</enddate><creator>Hsu, Chun-Fei</creator><creator>Chen, Bo-Rui</creator><creator>Wu, Bing-Fei</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1950-8774</orcidid></search><sort><creationdate>20220422</creationdate><title>Broad-learning recurrent Hermite neural control for unknown nonlinear systems</title><author>Hsu, Chun-Fei ; Chen, Bo-Rui ; Wu, Bing-Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-a4c2328239c1340baa2b1ce7085eeba2236e47827544c7ef8aefe2ba0cd6e2a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Broad-learning system</topic><topic>Control systems</topic><topic>Controllers</topic><topic>Convergence</topic><topic>Finite-time convergence</topic><topic>Learning</topic><topic>Liapunov functions</topic><topic>Neural networks</topic><topic>Nonlinear control</topic><topic>Nonlinear systems</topic><topic>Parameter learning</topic><topic>Recurrent neural network</topic><topic>Robust control</topic><topic>Stability analysis</topic><topic>System dynamics</topic><topic>Systems stability</topic><topic>Tracking control</topic><topic>Tracking errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsu, Chun-Fei</creatorcontrib><creatorcontrib>Chen, Bo-Rui</creatorcontrib><creatorcontrib>Wu, Bing-Fei</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsu, Chun-Fei</au><au>Chen, Bo-Rui</au><au>Wu, Bing-Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Broad-learning recurrent Hermite neural control for unknown nonlinear systems</atitle><jtitle>Knowledge-based systems</jtitle><date>2022-04-22</date><risdate>2022</risdate><volume>242</volume><spage>108263</spage><pages>108263-</pages><artnum>108263</artnum><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>The broad-learning systems (BLS) with advance control theories have been studied, but found to have two disadvantages: one is that the calculations are too complicated and the other is that the convergence time cannot be guaranteed. In order to mitigate the high computational loading, this study proposes a broad-learning Hermite neural network (BHNN), which has the capability of dynamic mapping and reduces the structural complexity of neural network. Meanwhile, a broad-learning recurrent Hermite neural control (BRHNC) system is proposed while maintaining finite-time stability to speed up the tracking error convergence. The proposed BRHNC system comprises two controllers: a recurrent broad controller that utilizes a BHNN to approximate on-line an ideal finite-time controller and a robust exponential controller that ensures system stability through a Lyapunov function. Meanwhile, the BHNN’s full-tuned parameter learning laws are developed to increase the approximating capacity, learning capacity and accuracy using gradient descent method. Finally, simulation and experimental results show that the BRHNC system has good control, tracking and disturbance rejection properties, while the BRHNC system requires no prior knowledge about the system dynamics.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2022.108263</doi><orcidid>https://orcid.org/0000-0002-1950-8774</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-7051 |
ispartof | Knowledge-based systems, 2022-04, Vol.242, p.108263, Article 108263 |
issn | 0950-7051 1872-7409 |
language | eng |
recordid | cdi_proquest_journals_2649194208 |
source | Elsevier ScienceDirect Journals |
subjects | Broad-learning system Control systems Controllers Convergence Finite-time convergence Learning Liapunov functions Neural networks Nonlinear control Nonlinear systems Parameter learning Recurrent neural network Robust control Stability analysis System dynamics Systems stability Tracking control Tracking errors |
title | Broad-learning recurrent Hermite neural control for unknown nonlinear systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A06%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Broad-learning%20recurrent%20Hermite%20neural%20control%20for%20unknown%20nonlinear%20systems&rft.jtitle=Knowledge-based%20systems&rft.au=Hsu,%20Chun-Fei&rft.date=2022-04-22&rft.volume=242&rft.spage=108263&rft.pages=108263-&rft.artnum=108263&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2022.108263&rft_dat=%3Cproquest_cross%3E2649194208%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2649194208&rft_id=info:pmid/&rft_els_id=S0950705122000831&rfr_iscdi=true |