Quantum chemical study of end-capped acceptor and bridge on triphenyl diamine based molecules to enhance the optoelectronic properties of organic solar cells

This research project focuses on quantum chemical study of triphenyl diamine based molecules and DFT analysis of reference XSln847 and nine designed molecules to boost the efficiencies of organic solar cells and to make viable competitive solar cell. To study photovoltaic features, computational DFT...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer (Guilford) 2022-04, Vol.245, p.124675, Article 124675
Hauptverfasser: Jaffar, Kinza, Elqahtani, Zainab Mufarreh, Afzal, Qaba Qusain, Ans, Muhammad, Riaz, Saima, Tahir, Muhammad Asif, Iqbal, Javed, Mahmoud, Zakaria M.M., Alrowaili, Z.A., Al-Buriahi, M.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 124675
container_title Polymer (Guilford)
container_volume 245
creator Jaffar, Kinza
Elqahtani, Zainab Mufarreh
Afzal, Qaba Qusain
Ans, Muhammad
Riaz, Saima
Tahir, Muhammad Asif
Iqbal, Javed
Mahmoud, Zakaria M.M.
Alrowaili, Z.A.
Al-Buriahi, M.S.
description This research project focuses on quantum chemical study of triphenyl diamine based molecules and DFT analysis of reference XSln847 and nine designed molecules to boost the efficiencies of organic solar cells and to make viable competitive solar cell. To study photovoltaic features, computational DFT and TD-DFT simulations are used to conduct extensive research at the molecular level of the investigated compounds. CAM-B3LYP/6-31G (d, p) level has been used to perceive molecules analytically for their predicted values of absorption maximum, highest light harvesting efficiency, frontier molecular orbitals and quantum chemical parameters i.e. chemical potential, chemical softness, chemical hardness, and electrophilicity index. Amongst TPDM-1 to TPDM-9 structures, TPDM-9 shows maximum absorption (530 nm) and lowest bandgap (3.19 eV). TPDM-7 has highest power conversion efficiency. While TPDM-4 shows better light harvesting efficiency to enhance organic solar cells efficiency. After successfully verifying the compatibility of the donor and acceptor interfaces, the PTB7-Th (donor) is used for electrophilic designed molecules while for donor designed molecules PC16BM (acceptor) is used as their HOMO LUMO values for the estimation of Voc values. All the proposed molecules show computationally amplified metrics, which is a compelling argument for their potential experimental use in creating effective solar cells. [Display omitted] •CAM-B3LYP/6-31G (d, p) level has been used to investigate the optoelectronic properties of all molecules.•A maximum Absorption wavelength of 530 nm has been found for the TPDM-9 molecule.•Narrow bandgap 3.19 eV has been observed for the TPDM-9 molecule.
doi_str_mv 10.1016/j.polymer.2022.124675
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2649087199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032386122001628</els_id><sourcerecordid>2649087199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-563b5ece537e425334a0e056dae42d8c8a744f37f4c0d3c229600679a4b87f793</originalsourceid><addsrcrecordid>eNqFUdtKJDEQDaLgePkEIeBzj7l1p_tJRHR3QVgW1ueQSaqdDOmkTdLCfIz_aobx3adQqXNOVZ2D0A0la0pod7dbz9HvJ0hrRhhbUyY62Z6gFe0lbxgb6ClaEcJZw_uOnqOLnHeEENYysUKf_xYdyjJhs4XJGe1xLovd4zhiCLYxep7BYm0MzCUmrIPFm-TsG-AYcElu3kLYe2ydnlwAvNG5wqfowSweMi6xymx1MIDLtnKqCNReSTE4g-cUZ0jFVWCdF9ObPvzm6HXCBrzPV-hs1D7D9fd7iV6fn_4__m5e_v768_jw0hjOZWnajm9aMNByCYK1nAtNgLSd1bW0vem1FGLkchSGWG6qJR0hnRy02PRylAO_RLdH3brR-wK5qF1cUqgjFevEQHpJhwOqPaJMijknGNWc3KTTXlGiDkmonfpOQh2SUMckKu_-yIN6woer3WwcVE-sS9ULZaP7QeELvziX2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649087199</pqid></control><display><type>article</type><title>Quantum chemical study of end-capped acceptor and bridge on triphenyl diamine based molecules to enhance the optoelectronic properties of organic solar cells</title><source>Elsevier ScienceDirect Journals</source><creator>Jaffar, Kinza ; Elqahtani, Zainab Mufarreh ; Afzal, Qaba Qusain ; Ans, Muhammad ; Riaz, Saima ; Tahir, Muhammad Asif ; Iqbal, Javed ; Mahmoud, Zakaria M.M. ; Alrowaili, Z.A. ; Al-Buriahi, M.S.</creator><creatorcontrib>Jaffar, Kinza ; Elqahtani, Zainab Mufarreh ; Afzal, Qaba Qusain ; Ans, Muhammad ; Riaz, Saima ; Tahir, Muhammad Asif ; Iqbal, Javed ; Mahmoud, Zakaria M.M. ; Alrowaili, Z.A. ; Al-Buriahi, M.S.</creatorcontrib><description>This research project focuses on quantum chemical study of triphenyl diamine based molecules and DFT analysis of reference XSln847 and nine designed molecules to boost the efficiencies of organic solar cells and to make viable competitive solar cell. To study photovoltaic features, computational DFT and TD-DFT simulations are used to conduct extensive research at the molecular level of the investigated compounds. CAM-B3LYP/6-31G (d, p) level has been used to perceive molecules analytically for their predicted values of absorption maximum, highest light harvesting efficiency, frontier molecular orbitals and quantum chemical parameters i.e. chemical potential, chemical softness, chemical hardness, and electrophilicity index. Amongst TPDM-1 to TPDM-9 structures, TPDM-9 shows maximum absorption (530 nm) and lowest bandgap (3.19 eV). TPDM-7 has highest power conversion efficiency. While TPDM-4 shows better light harvesting efficiency to enhance organic solar cells efficiency. After successfully verifying the compatibility of the donor and acceptor interfaces, the PTB7-Th (donor) is used for electrophilic designed molecules while for donor designed molecules PC16BM (acceptor) is used as their HOMO LUMO values for the estimation of Voc values. All the proposed molecules show computationally amplified metrics, which is a compelling argument for their potential experimental use in creating effective solar cells. [Display omitted] •CAM-B3LYP/6-31G (d, p) level has been used to investigate the optoelectronic properties of all molecules.•A maximum Absorption wavelength of 530 nm has been found for the TPDM-9 molecule.•Narrow bandgap 3.19 eV has been observed for the TPDM-9 molecule.</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2022.124675</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Absorption ; Chemical potential ; Computer applications ; DFT and TD-DFT analysis ; Diamines ; Efficiency ; Energy conversion efficiency ; Interfaces ; Molecular orbitals ; Optoelectronics ; Organic chemistry ; Organic solar cell (OSCs) ; Photovoltaic cells ; Photovoltaic properties ; Photovoltaics ; Power conversion efficiency ; Quantum chemistry ; Research projects ; Softness ; Solar cells ; Solar energy</subject><ispartof>Polymer (Guilford), 2022-04, Vol.245, p.124675, Article 124675</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 6, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-563b5ece537e425334a0e056dae42d8c8a744f37f4c0d3c229600679a4b87f793</citedby><cites>FETCH-LOGICAL-c337t-563b5ece537e425334a0e056dae42d8c8a744f37f4c0d3c229600679a4b87f793</cites><orcidid>0000-0002-5397-7435</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.polymer.2022.124675$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27904,27905,45975</link.rule.ids></links><search><creatorcontrib>Jaffar, Kinza</creatorcontrib><creatorcontrib>Elqahtani, Zainab Mufarreh</creatorcontrib><creatorcontrib>Afzal, Qaba Qusain</creatorcontrib><creatorcontrib>Ans, Muhammad</creatorcontrib><creatorcontrib>Riaz, Saima</creatorcontrib><creatorcontrib>Tahir, Muhammad Asif</creatorcontrib><creatorcontrib>Iqbal, Javed</creatorcontrib><creatorcontrib>Mahmoud, Zakaria M.M.</creatorcontrib><creatorcontrib>Alrowaili, Z.A.</creatorcontrib><creatorcontrib>Al-Buriahi, M.S.</creatorcontrib><title>Quantum chemical study of end-capped acceptor and bridge on triphenyl diamine based molecules to enhance the optoelectronic properties of organic solar cells</title><title>Polymer (Guilford)</title><description>This research project focuses on quantum chemical study of triphenyl diamine based molecules and DFT analysis of reference XSln847 and nine designed molecules to boost the efficiencies of organic solar cells and to make viable competitive solar cell. To study photovoltaic features, computational DFT and TD-DFT simulations are used to conduct extensive research at the molecular level of the investigated compounds. CAM-B3LYP/6-31G (d, p) level has been used to perceive molecules analytically for their predicted values of absorption maximum, highest light harvesting efficiency, frontier molecular orbitals and quantum chemical parameters i.e. chemical potential, chemical softness, chemical hardness, and electrophilicity index. Amongst TPDM-1 to TPDM-9 structures, TPDM-9 shows maximum absorption (530 nm) and lowest bandgap (3.19 eV). TPDM-7 has highest power conversion efficiency. While TPDM-4 shows better light harvesting efficiency to enhance organic solar cells efficiency. After successfully verifying the compatibility of the donor and acceptor interfaces, the PTB7-Th (donor) is used for electrophilic designed molecules while for donor designed molecules PC16BM (acceptor) is used as their HOMO LUMO values for the estimation of Voc values. All the proposed molecules show computationally amplified metrics, which is a compelling argument for their potential experimental use in creating effective solar cells. [Display omitted] •CAM-B3LYP/6-31G (d, p) level has been used to investigate the optoelectronic properties of all molecules.•A maximum Absorption wavelength of 530 nm has been found for the TPDM-9 molecule.•Narrow bandgap 3.19 eV has been observed for the TPDM-9 molecule.</description><subject>Absorption</subject><subject>Chemical potential</subject><subject>Computer applications</subject><subject>DFT and TD-DFT analysis</subject><subject>Diamines</subject><subject>Efficiency</subject><subject>Energy conversion efficiency</subject><subject>Interfaces</subject><subject>Molecular orbitals</subject><subject>Optoelectronics</subject><subject>Organic chemistry</subject><subject>Organic solar cell (OSCs)</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic properties</subject><subject>Photovoltaics</subject><subject>Power conversion efficiency</subject><subject>Quantum chemistry</subject><subject>Research projects</subject><subject>Softness</subject><subject>Solar cells</subject><subject>Solar energy</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFUdtKJDEQDaLgePkEIeBzj7l1p_tJRHR3QVgW1ueQSaqdDOmkTdLCfIz_aobx3adQqXNOVZ2D0A0la0pod7dbz9HvJ0hrRhhbUyY62Z6gFe0lbxgb6ClaEcJZw_uOnqOLnHeEENYysUKf_xYdyjJhs4XJGe1xLovd4zhiCLYxep7BYm0MzCUmrIPFm-TsG-AYcElu3kLYe2ydnlwAvNG5wqfowSweMi6xymx1MIDLtnKqCNReSTE4g-cUZ0jFVWCdF9ObPvzm6HXCBrzPV-hs1D7D9fd7iV6fn_4__m5e_v768_jw0hjOZWnajm9aMNByCYK1nAtNgLSd1bW0vem1FGLkchSGWG6qJR0hnRy02PRylAO_RLdH3brR-wK5qF1cUqgjFevEQHpJhwOqPaJMijknGNWc3KTTXlGiDkmonfpOQh2SUMckKu_-yIN6woer3WwcVE-sS9ULZaP7QeELvziX2g</recordid><startdate>20220406</startdate><enddate>20220406</enddate><creator>Jaffar, Kinza</creator><creator>Elqahtani, Zainab Mufarreh</creator><creator>Afzal, Qaba Qusain</creator><creator>Ans, Muhammad</creator><creator>Riaz, Saima</creator><creator>Tahir, Muhammad Asif</creator><creator>Iqbal, Javed</creator><creator>Mahmoud, Zakaria M.M.</creator><creator>Alrowaili, Z.A.</creator><creator>Al-Buriahi, M.S.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-5397-7435</orcidid></search><sort><creationdate>20220406</creationdate><title>Quantum chemical study of end-capped acceptor and bridge on triphenyl diamine based molecules to enhance the optoelectronic properties of organic solar cells</title><author>Jaffar, Kinza ; Elqahtani, Zainab Mufarreh ; Afzal, Qaba Qusain ; Ans, Muhammad ; Riaz, Saima ; Tahir, Muhammad Asif ; Iqbal, Javed ; Mahmoud, Zakaria M.M. ; Alrowaili, Z.A. ; Al-Buriahi, M.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-563b5ece537e425334a0e056dae42d8c8a744f37f4c0d3c229600679a4b87f793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Absorption</topic><topic>Chemical potential</topic><topic>Computer applications</topic><topic>DFT and TD-DFT analysis</topic><topic>Diamines</topic><topic>Efficiency</topic><topic>Energy conversion efficiency</topic><topic>Interfaces</topic><topic>Molecular orbitals</topic><topic>Optoelectronics</topic><topic>Organic chemistry</topic><topic>Organic solar cell (OSCs)</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic properties</topic><topic>Photovoltaics</topic><topic>Power conversion efficiency</topic><topic>Quantum chemistry</topic><topic>Research projects</topic><topic>Softness</topic><topic>Solar cells</topic><topic>Solar energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jaffar, Kinza</creatorcontrib><creatorcontrib>Elqahtani, Zainab Mufarreh</creatorcontrib><creatorcontrib>Afzal, Qaba Qusain</creatorcontrib><creatorcontrib>Ans, Muhammad</creatorcontrib><creatorcontrib>Riaz, Saima</creatorcontrib><creatorcontrib>Tahir, Muhammad Asif</creatorcontrib><creatorcontrib>Iqbal, Javed</creatorcontrib><creatorcontrib>Mahmoud, Zakaria M.M.</creatorcontrib><creatorcontrib>Alrowaili, Z.A.</creatorcontrib><creatorcontrib>Al-Buriahi, M.S.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jaffar, Kinza</au><au>Elqahtani, Zainab Mufarreh</au><au>Afzal, Qaba Qusain</au><au>Ans, Muhammad</au><au>Riaz, Saima</au><au>Tahir, Muhammad Asif</au><au>Iqbal, Javed</au><au>Mahmoud, Zakaria M.M.</au><au>Alrowaili, Z.A.</au><au>Al-Buriahi, M.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum chemical study of end-capped acceptor and bridge on triphenyl diamine based molecules to enhance the optoelectronic properties of organic solar cells</atitle><jtitle>Polymer (Guilford)</jtitle><date>2022-04-06</date><risdate>2022</risdate><volume>245</volume><spage>124675</spage><pages>124675-</pages><artnum>124675</artnum><issn>0032-3861</issn><eissn>1873-2291</eissn><abstract>This research project focuses on quantum chemical study of triphenyl diamine based molecules and DFT analysis of reference XSln847 and nine designed molecules to boost the efficiencies of organic solar cells and to make viable competitive solar cell. To study photovoltaic features, computational DFT and TD-DFT simulations are used to conduct extensive research at the molecular level of the investigated compounds. CAM-B3LYP/6-31G (d, p) level has been used to perceive molecules analytically for their predicted values of absorption maximum, highest light harvesting efficiency, frontier molecular orbitals and quantum chemical parameters i.e. chemical potential, chemical softness, chemical hardness, and electrophilicity index. Amongst TPDM-1 to TPDM-9 structures, TPDM-9 shows maximum absorption (530 nm) and lowest bandgap (3.19 eV). TPDM-7 has highest power conversion efficiency. While TPDM-4 shows better light harvesting efficiency to enhance organic solar cells efficiency. After successfully verifying the compatibility of the donor and acceptor interfaces, the PTB7-Th (donor) is used for electrophilic designed molecules while for donor designed molecules PC16BM (acceptor) is used as their HOMO LUMO values for the estimation of Voc values. All the proposed molecules show computationally amplified metrics, which is a compelling argument for their potential experimental use in creating effective solar cells. [Display omitted] •CAM-B3LYP/6-31G (d, p) level has been used to investigate the optoelectronic properties of all molecules.•A maximum Absorption wavelength of 530 nm has been found for the TPDM-9 molecule.•Narrow bandgap 3.19 eV has been observed for the TPDM-9 molecule.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymer.2022.124675</doi><orcidid>https://orcid.org/0000-0002-5397-7435</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0032-3861
ispartof Polymer (Guilford), 2022-04, Vol.245, p.124675, Article 124675
issn 0032-3861
1873-2291
language eng
recordid cdi_proquest_journals_2649087199
source Elsevier ScienceDirect Journals
subjects Absorption
Chemical potential
Computer applications
DFT and TD-DFT analysis
Diamines
Efficiency
Energy conversion efficiency
Interfaces
Molecular orbitals
Optoelectronics
Organic chemistry
Organic solar cell (OSCs)
Photovoltaic cells
Photovoltaic properties
Photovoltaics
Power conversion efficiency
Quantum chemistry
Research projects
Softness
Solar cells
Solar energy
title Quantum chemical study of end-capped acceptor and bridge on triphenyl diamine based molecules to enhance the optoelectronic properties of organic solar cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A41%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20chemical%20study%20of%20end-capped%20acceptor%20and%20bridge%20on%20triphenyl%20diamine%20based%20molecules%20to%20enhance%20the%20optoelectronic%20properties%20of%20organic%20solar%20cells&rft.jtitle=Polymer%20(Guilford)&rft.au=Jaffar,%20Kinza&rft.date=2022-04-06&rft.volume=245&rft.spage=124675&rft.pages=124675-&rft.artnum=124675&rft.issn=0032-3861&rft.eissn=1873-2291&rft_id=info:doi/10.1016/j.polymer.2022.124675&rft_dat=%3Cproquest_cross%3E2649087199%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2649087199&rft_id=info:pmid/&rft_els_id=S0032386122001628&rfr_iscdi=true