The Hawking–Penrose Singularity Theorem for C1-Lorentzian Metrics
We extend both the Hawking–Penrose theorem and its generalisation due to Galloway and Senovilla to Lorentzian metrics of regularity C 1 . For metrics of such low regularity, two main obstacles have to be addressed. On the one hand, the Ricci tensor now is distributional, and on the other hand, uniqu...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2022, Vol.391 (3), p.1143-1179 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1179 |
---|---|
container_issue | 3 |
container_start_page | 1143 |
container_title | Communications in mathematical physics |
container_volume | 391 |
creator | Kunzinger, Michael Ohanyan, Argam Schinnerl, Benedict Steinbauer, Roland |
description | We extend both the Hawking–Penrose theorem and its generalisation due to Galloway and Senovilla to Lorentzian metrics of regularity
C
1
. For metrics of such low regularity, two main obstacles have to be addressed. On the one hand, the Ricci tensor now is distributional, and on the other hand, unique solvability of the geodesic equation is lost. To deal with the first issue in a consistent way, we develop a theory of tensor distributions of finite order, which also provides a framework for the recent proofs of the theorems of Hawking and of Penrose for
C
1
-metrics (Graf in Commun Math Phys 378(2):1417–1450, 2020). For the second issue, we study geodesic branching and add a further alternative to causal geodesic incompleteness to the theorem, namely a condition of maximal causal non-branching. The genericity condition is re-cast in a distributional form that applies to the current reduced regularity while still being fully compatible with the smooth and
C
1
,
1
-settings. In addition, we develop refinements of the comparison techniques used in the proof of the
C
1
,
1
-version of the theorem (Graf in Commun Math Phys 360:1009–1042, 2018). The necessary results from low regularity causality theory are collected in an appendix. |
doi_str_mv | 10.1007/s00220-022-04335-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2649015560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2649015560</sourcerecordid><originalsourceid>FETCH-LOGICAL-p728-227b7a5b1823ebf1a776311f8d3627a2a8712c6612e26ffb1edcd1f9d873871c3</originalsourceid><addsrcrecordid>eNpFkMFKxDAQhoMouK6-gKeC5-jMZJukRynqCisK7j2kbaJd13ZNWkRPvoNv6JMYXcHLP_zMxwz_z9gxwikCqLMIQAQ8CYeZEDnXO2yCM5FsgXKXTQAQuJAo99lBjCsAKEjKCSuXjy6b29entnv4-vi8c13oo8vukx3XNrTDW5aIPrjnzPchK5EvkumG99Z22Y0bQlvHQ7bn7Tq6o785ZcvLi2U554vbq-vyfME3ijQnUpWyeYWahKs8WqWkQPS6EZKUJasVUi0lkiPpfYWuqRv0RaOVSKtaTNnJ9uwm9C-ji4NZ9WPo0kdDclYA5rmERIktFTchhXDhn0IwP2WZbVkmifkty2jxDV8TXHc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649015560</pqid></control><display><type>article</type><title>The Hawking–Penrose Singularity Theorem for C1-Lorentzian Metrics</title><source>Springer Nature - Complete Springer Journals</source><creator>Kunzinger, Michael ; Ohanyan, Argam ; Schinnerl, Benedict ; Steinbauer, Roland</creator><creatorcontrib>Kunzinger, Michael ; Ohanyan, Argam ; Schinnerl, Benedict ; Steinbauer, Roland</creatorcontrib><description>We extend both the Hawking–Penrose theorem and its generalisation due to Galloway and Senovilla to Lorentzian metrics of regularity
C
1
. For metrics of such low regularity, two main obstacles have to be addressed. On the one hand, the Ricci tensor now is distributional, and on the other hand, unique solvability of the geodesic equation is lost. To deal with the first issue in a consistent way, we develop a theory of tensor distributions of finite order, which also provides a framework for the recent proofs of the theorems of Hawking and of Penrose for
C
1
-metrics (Graf in Commun Math Phys 378(2):1417–1450, 2020). For the second issue, we study geodesic branching and add a further alternative to causal geodesic incompleteness to the theorem, namely a condition of maximal causal non-branching. The genericity condition is re-cast in a distributional form that applies to the current reduced regularity while still being fully compatible with the smooth and
C
1
,
1
-settings. In addition, we develop refinements of the comparison techniques used in the proof of the
C
1
,
1
-version of the theorem (Graf in Commun Math Phys 360:1009–1042, 2018). The necessary results from low regularity causality theory are collected in an appendix.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-022-04335-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Complex Systems ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematical Physics ; Physics ; Physics and Astronomy ; Quantum Physics ; Regularity ; Relativity Theory ; Tensors ; Theorems ; Theoretical</subject><ispartof>Communications in mathematical physics, 2022, Vol.391 (3), p.1143-1179</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7113-0588</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00220-022-04335-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00220-022-04335-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kunzinger, Michael</creatorcontrib><creatorcontrib>Ohanyan, Argam</creatorcontrib><creatorcontrib>Schinnerl, Benedict</creatorcontrib><creatorcontrib>Steinbauer, Roland</creatorcontrib><title>The Hawking–Penrose Singularity Theorem for C1-Lorentzian Metrics</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>We extend both the Hawking–Penrose theorem and its generalisation due to Galloway and Senovilla to Lorentzian metrics of regularity
C
1
. For metrics of such low regularity, two main obstacles have to be addressed. On the one hand, the Ricci tensor now is distributional, and on the other hand, unique solvability of the geodesic equation is lost. To deal with the first issue in a consistent way, we develop a theory of tensor distributions of finite order, which also provides a framework for the recent proofs of the theorems of Hawking and of Penrose for
C
1
-metrics (Graf in Commun Math Phys 378(2):1417–1450, 2020). For the second issue, we study geodesic branching and add a further alternative to causal geodesic incompleteness to the theorem, namely a condition of maximal causal non-branching. The genericity condition is re-cast in a distributional form that applies to the current reduced regularity while still being fully compatible with the smooth and
C
1
,
1
-settings. In addition, we develop refinements of the comparison techniques used in the proof of the
C
1
,
1
-version of the theorem (Graf in Commun Math Phys 360:1009–1042, 2018). The necessary results from low regularity causality theory are collected in an appendix.</description><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Regularity</subject><subject>Relativity Theory</subject><subject>Tensors</subject><subject>Theorems</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNpFkMFKxDAQhoMouK6-gKeC5-jMZJukRynqCisK7j2kbaJd13ZNWkRPvoNv6JMYXcHLP_zMxwz_z9gxwikCqLMIQAQ8CYeZEDnXO2yCM5FsgXKXTQAQuJAo99lBjCsAKEjKCSuXjy6b29entnv4-vi8c13oo8vukx3XNrTDW5aIPrjnzPchK5EvkumG99Z22Y0bQlvHQ7bn7Tq6o785ZcvLi2U554vbq-vyfME3ijQnUpWyeYWahKs8WqWkQPS6EZKUJasVUi0lkiPpfYWuqRv0RaOVSKtaTNnJ9uwm9C-ji4NZ9WPo0kdDclYA5rmERIktFTchhXDhn0IwP2WZbVkmifkty2jxDV8TXHc</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Kunzinger, Michael</creator><creator>Ohanyan, Argam</creator><creator>Schinnerl, Benedict</creator><creator>Steinbauer, Roland</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><orcidid>https://orcid.org/0000-0002-7113-0588</orcidid></search><sort><creationdate>2022</creationdate><title>The Hawking–Penrose Singularity Theorem for C1-Lorentzian Metrics</title><author>Kunzinger, Michael ; Ohanyan, Argam ; Schinnerl, Benedict ; Steinbauer, Roland</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p728-227b7a5b1823ebf1a776311f8d3627a2a8712c6612e26ffb1edcd1f9d873871c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Regularity</topic><topic>Relativity Theory</topic><topic>Tensors</topic><topic>Theorems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kunzinger, Michael</creatorcontrib><creatorcontrib>Ohanyan, Argam</creatorcontrib><creatorcontrib>Schinnerl, Benedict</creatorcontrib><creatorcontrib>Steinbauer, Roland</creatorcontrib><collection>Springer Nature OA Free Journals</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kunzinger, Michael</au><au>Ohanyan, Argam</au><au>Schinnerl, Benedict</au><au>Steinbauer, Roland</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Hawking–Penrose Singularity Theorem for C1-Lorentzian Metrics</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2022</date><risdate>2022</risdate><volume>391</volume><issue>3</issue><spage>1143</spage><epage>1179</epage><pages>1143-1179</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>We extend both the Hawking–Penrose theorem and its generalisation due to Galloway and Senovilla to Lorentzian metrics of regularity
C
1
. For metrics of such low regularity, two main obstacles have to be addressed. On the one hand, the Ricci tensor now is distributional, and on the other hand, unique solvability of the geodesic equation is lost. To deal with the first issue in a consistent way, we develop a theory of tensor distributions of finite order, which also provides a framework for the recent proofs of the theorems of Hawking and of Penrose for
C
1
-metrics (Graf in Commun Math Phys 378(2):1417–1450, 2020). For the second issue, we study geodesic branching and add a further alternative to causal geodesic incompleteness to the theorem, namely a condition of maximal causal non-branching. The genericity condition is re-cast in a distributional form that applies to the current reduced regularity while still being fully compatible with the smooth and
C
1
,
1
-settings. In addition, we develop refinements of the comparison techniques used in the proof of the
C
1
,
1
-version of the theorem (Graf in Commun Math Phys 360:1009–1042, 2018). The necessary results from low regularity causality theory are collected in an appendix.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-022-04335-8</doi><tpages>37</tpages><orcidid>https://orcid.org/0000-0002-7113-0588</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-3616 |
ispartof | Communications in mathematical physics, 2022, Vol.391 (3), p.1143-1179 |
issn | 0010-3616 1432-0916 |
language | eng |
recordid | cdi_proquest_journals_2649015560 |
source | Springer Nature - Complete Springer Journals |
subjects | Classical and Quantum Gravitation Complex Systems Mathematical analysis Mathematical and Computational Physics Mathematical Physics Physics Physics and Astronomy Quantum Physics Regularity Relativity Theory Tensors Theorems Theoretical |
title | The Hawking–Penrose Singularity Theorem for C1-Lorentzian Metrics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A50%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Hawking%E2%80%93Penrose%20Singularity%20Theorem%20for%20C1-Lorentzian%20Metrics&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Kunzinger,%20Michael&rft.date=2022&rft.volume=391&rft.issue=3&rft.spage=1143&rft.epage=1179&rft.pages=1143-1179&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-022-04335-8&rft_dat=%3Cproquest_sprin%3E2649015560%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2649015560&rft_id=info:pmid/&rfr_iscdi=true |