Effects of Pulsed‐Wave Photobiomodulation Therapy on Human Spermatozoa

Background and Objectives Previous studies reported that photobiomodulation (PBM) positively affects the mitochondrial respiratory chain in sperm, resulting in improved motility and velocity. As laser settings are not yet fully established, the present study aimed at optimizing PBM on human sperm. I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lasers in surgery and medicine 2022-04, Vol.54 (4), p.540-553
Hauptverfasser: Espey, Burkhard T., Kielwein, Karin, Ven, Hans, Steger, Klaus, Allam, Jean‐Pierre, Paradowska‐Dogan, Agnieszka, Ven, Katrin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 553
container_issue 4
container_start_page 540
container_title Lasers in surgery and medicine
container_volume 54
creator Espey, Burkhard T.
Kielwein, Karin
Ven, Hans
Steger, Klaus
Allam, Jean‐Pierre
Paradowska‐Dogan, Agnieszka
Ven, Katrin
description Background and Objectives Previous studies reported that photobiomodulation (PBM) positively affects the mitochondrial respiratory chain in sperm, resulting in improved motility and velocity. As laser settings are not yet fully established, the present study aimed at optimizing PBM on human sperm. In addition, possible side‐effects of PBM on sperm DNA fragmentation level and acrosomal integrity have been analyzed. Study Design/Materials and Methods A pulsed laser‐probe (wavelength 655 nm, output power 25 mW/cm², impulse duration 200 nanoseconds) was used. Native fresh liquefied semen samples underwent radiation with energy doses of 0 (control), 4, 6, and 10 J/cm². Sperm parameters were assessed at 0, 30, 60, 90, and 120 minutes after radiation using a computer‐assisted sperm analysis system. Motility and velocity of sperm from asthenozoospermic patients (n = 42) and normozoospermic controls (n = 22) were measured. The amount of DNA strand breaks was analyzed using ligation‐mediated quantitative polymerase chain reaction in patients with asthenozoospermia (n = 18) and normozoospermia (n = 13). Post‐irradiance acrosomal integrity was investigated using flow cytometry based on CD46 protein expression (n = 7). Results Exposure to laser energy‐doses of 4 and 6 J/cm² improved sperm motility and velocity in asthenozoospermic patients. PBM exhibited no significant effect on DNA fragmentation level and expression of CD46 serving as a biomarker for acrosome integrity. Conclusion PBM improves sperm motility parameters by maintaining DNA and acrosome integrity and, therefore, represents a promising new tool for assisted reproductive therapy. In particular, improving sperm motility in asthenozoospermic patients by PBM in future may contribute to increasing the chance for successful intrauterine insemination. The present trial has no clinical registration number, as only in vitro studies were performed. The study was approved by the local ethics committee and performed according to the Declaration of Helsinki. Lasers Surg. Med. © 2021 The Authors. Lasers in Surgery and Medicine published by Wiley Periodicals LLC.
doi_str_mv 10.1002/lsm.23399
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2649002437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2649002437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3209-415b7afaac7919e4fda68d056377696652d0cc971b36d474670d48eb3fa9aead3</originalsourceid><addsrcrecordid>eNp1kLFOwzAURS0EoqUw8AMoEhND2uc4tesRVYUiFVGpRYyWE9tqqqQudgIqE5_AN_IlGFLYmN4dzrtXOgidY-hjgGRQ-qqfEML5Aepi4DTmGPAh6gIOeQQ86aAT79cAQBJgx6hDCOMJJ6SLphNjdF77yJpo3pReq8_3jyf5oqP5ytY2K2xlVVPKurCbaLnSTm53UYjTppKbaLHVrpK1fbPyFB0ZGf7P9reHHm8my_E0nj3c3o2vZ3Eetnmc4mHGpJEyZxxznRol6UjBkBLGKKd0mCjIc85wRqhKWUoZqHSkM2Ikl1oq0kOXbe_W2edG-1qsbeM2YVIkNOVBR0pYoK5aKnfWe6eN2Lqikm4nMIhvZyI4Ez_OAnuxb2yySqs_8ldSAAYt8FqUevd_k5gt7tvKL_Lxdos</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649002437</pqid></control><display><type>article</type><title>Effects of Pulsed‐Wave Photobiomodulation Therapy on Human Spermatozoa</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Espey, Burkhard T. ; Kielwein, Karin ; Ven, Hans ; Steger, Klaus ; Allam, Jean‐Pierre ; Paradowska‐Dogan, Agnieszka ; Ven, Katrin</creator><creatorcontrib>Espey, Burkhard T. ; Kielwein, Karin ; Ven, Hans ; Steger, Klaus ; Allam, Jean‐Pierre ; Paradowska‐Dogan, Agnieszka ; Ven, Katrin</creatorcontrib><description>Background and Objectives Previous studies reported that photobiomodulation (PBM) positively affects the mitochondrial respiratory chain in sperm, resulting in improved motility and velocity. As laser settings are not yet fully established, the present study aimed at optimizing PBM on human sperm. In addition, possible side‐effects of PBM on sperm DNA fragmentation level and acrosomal integrity have been analyzed. Study Design/Materials and Methods A pulsed laser‐probe (wavelength 655 nm, output power 25 mW/cm², impulse duration 200 nanoseconds) was used. Native fresh liquefied semen samples underwent radiation with energy doses of 0 (control), 4, 6, and 10 J/cm². Sperm parameters were assessed at 0, 30, 60, 90, and 120 minutes after radiation using a computer‐assisted sperm analysis system. Motility and velocity of sperm from asthenozoospermic patients (n = 42) and normozoospermic controls (n = 22) were measured. The amount of DNA strand breaks was analyzed using ligation‐mediated quantitative polymerase chain reaction in patients with asthenozoospermia (n = 18) and normozoospermia (n = 13). Post‐irradiance acrosomal integrity was investigated using flow cytometry based on CD46 protein expression (n = 7). Results Exposure to laser energy‐doses of 4 and 6 J/cm² improved sperm motility and velocity in asthenozoospermic patients. PBM exhibited no significant effect on DNA fragmentation level and expression of CD46 serving as a biomarker for acrosome integrity. Conclusion PBM improves sperm motility parameters by maintaining DNA and acrosome integrity and, therefore, represents a promising new tool for assisted reproductive therapy. In particular, improving sperm motility in asthenozoospermic patients by PBM in future may contribute to increasing the chance for successful intrauterine insemination. The present trial has no clinical registration number, as only in vitro studies were performed. The study was approved by the local ethics committee and performed according to the Declaration of Helsinki. Lasers Surg. Med. © 2021 The Authors. Lasers in Surgery and Medicine published by Wiley Periodicals LLC.</description><identifier>ISSN: 0196-8092</identifier><identifier>EISSN: 1096-9101</identifier><identifier>DOI: 10.1002/lsm.23399</identifier><identifier>PMID: 33792933</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>acrosome ; Asthenozoospermia - genetics ; Asthenozoospermia - radiotherapy ; Biomarkers ; CASA ; CD46 ; CD46 antigen ; Deoxyribonucleic acid ; DNA ; DNA damage ; DNA fragmentation ; Electron transport ; Ethical standards ; Flow Cytometry ; Fragmentation ; Gene expression ; Humans ; Integrity ; Irradiance ; Lasers ; Light therapy ; LMqPCR ; Low-Level Light Therapy ; Male ; male fertility ; Mitochondria ; Motility ; Parameters ; Patients ; photobiomodulation ; Polymerase chain reaction ; Pulsed lasers ; Radiation ; Reproduction ; Semen ; Sperm ; sperm motility ; Sperm Motility - radiation effects ; sperm velocity ; Spermatozoa ; Spermatozoa - metabolism ; Velocity</subject><ispartof>Lasers in surgery and medicine, 2022-04, Vol.54 (4), p.540-553</ispartof><rights>2021 The Authors. published by Wiley Periodicals LLC.</rights><rights>2021 The Authors. Lasers in Surgery and Medicine published by Wiley Periodicals LLC.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3209-415b7afaac7919e4fda68d056377696652d0cc971b36d474670d48eb3fa9aead3</citedby><cites>FETCH-LOGICAL-c3209-415b7afaac7919e4fda68d056377696652d0cc971b36d474670d48eb3fa9aead3</cites><orcidid>0000-0002-4511-0065</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Flsm.23399$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Flsm.23399$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33792933$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Espey, Burkhard T.</creatorcontrib><creatorcontrib>Kielwein, Karin</creatorcontrib><creatorcontrib>Ven, Hans</creatorcontrib><creatorcontrib>Steger, Klaus</creatorcontrib><creatorcontrib>Allam, Jean‐Pierre</creatorcontrib><creatorcontrib>Paradowska‐Dogan, Agnieszka</creatorcontrib><creatorcontrib>Ven, Katrin</creatorcontrib><title>Effects of Pulsed‐Wave Photobiomodulation Therapy on Human Spermatozoa</title><title>Lasers in surgery and medicine</title><addtitle>Lasers Surg Med</addtitle><description>Background and Objectives Previous studies reported that photobiomodulation (PBM) positively affects the mitochondrial respiratory chain in sperm, resulting in improved motility and velocity. As laser settings are not yet fully established, the present study aimed at optimizing PBM on human sperm. In addition, possible side‐effects of PBM on sperm DNA fragmentation level and acrosomal integrity have been analyzed. Study Design/Materials and Methods A pulsed laser‐probe (wavelength 655 nm, output power 25 mW/cm², impulse duration 200 nanoseconds) was used. Native fresh liquefied semen samples underwent radiation with energy doses of 0 (control), 4, 6, and 10 J/cm². Sperm parameters were assessed at 0, 30, 60, 90, and 120 minutes after radiation using a computer‐assisted sperm analysis system. Motility and velocity of sperm from asthenozoospermic patients (n = 42) and normozoospermic controls (n = 22) were measured. The amount of DNA strand breaks was analyzed using ligation‐mediated quantitative polymerase chain reaction in patients with asthenozoospermia (n = 18) and normozoospermia (n = 13). Post‐irradiance acrosomal integrity was investigated using flow cytometry based on CD46 protein expression (n = 7). Results Exposure to laser energy‐doses of 4 and 6 J/cm² improved sperm motility and velocity in asthenozoospermic patients. PBM exhibited no significant effect on DNA fragmentation level and expression of CD46 serving as a biomarker for acrosome integrity. Conclusion PBM improves sperm motility parameters by maintaining DNA and acrosome integrity and, therefore, represents a promising new tool for assisted reproductive therapy. In particular, improving sperm motility in asthenozoospermic patients by PBM in future may contribute to increasing the chance for successful intrauterine insemination. The present trial has no clinical registration number, as only in vitro studies were performed. The study was approved by the local ethics committee and performed according to the Declaration of Helsinki. Lasers Surg. Med. © 2021 The Authors. Lasers in Surgery and Medicine published by Wiley Periodicals LLC.</description><subject>acrosome</subject><subject>Asthenozoospermia - genetics</subject><subject>Asthenozoospermia - radiotherapy</subject><subject>Biomarkers</subject><subject>CASA</subject><subject>CD46</subject><subject>CD46 antigen</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA damage</subject><subject>DNA fragmentation</subject><subject>Electron transport</subject><subject>Ethical standards</subject><subject>Flow Cytometry</subject><subject>Fragmentation</subject><subject>Gene expression</subject><subject>Humans</subject><subject>Integrity</subject><subject>Irradiance</subject><subject>Lasers</subject><subject>Light therapy</subject><subject>LMqPCR</subject><subject>Low-Level Light Therapy</subject><subject>Male</subject><subject>male fertility</subject><subject>Mitochondria</subject><subject>Motility</subject><subject>Parameters</subject><subject>Patients</subject><subject>photobiomodulation</subject><subject>Polymerase chain reaction</subject><subject>Pulsed lasers</subject><subject>Radiation</subject><subject>Reproduction</subject><subject>Semen</subject><subject>Sperm</subject><subject>sperm motility</subject><subject>Sperm Motility - radiation effects</subject><subject>sperm velocity</subject><subject>Spermatozoa</subject><subject>Spermatozoa - metabolism</subject><subject>Velocity</subject><issn>0196-8092</issn><issn>1096-9101</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kLFOwzAURS0EoqUw8AMoEhND2uc4tesRVYUiFVGpRYyWE9tqqqQudgIqE5_AN_IlGFLYmN4dzrtXOgidY-hjgGRQ-qqfEML5Aepi4DTmGPAh6gIOeQQ86aAT79cAQBJgx6hDCOMJJ6SLphNjdF77yJpo3pReq8_3jyf5oqP5ytY2K2xlVVPKurCbaLnSTm53UYjTppKbaLHVrpK1fbPyFB0ZGf7P9reHHm8my_E0nj3c3o2vZ3Eetnmc4mHGpJEyZxxznRol6UjBkBLGKKd0mCjIc85wRqhKWUoZqHSkM2Ikl1oq0kOXbe_W2edG-1qsbeM2YVIkNOVBR0pYoK5aKnfWe6eN2Lqikm4nMIhvZyI4Ez_OAnuxb2yySqs_8ldSAAYt8FqUevd_k5gt7tvKL_Lxdos</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Espey, Burkhard T.</creator><creator>Kielwein, Karin</creator><creator>Ven, Hans</creator><creator>Steger, Klaus</creator><creator>Allam, Jean‐Pierre</creator><creator>Paradowska‐Dogan, Agnieszka</creator><creator>Ven, Katrin</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-4511-0065</orcidid></search><sort><creationdate>202204</creationdate><title>Effects of Pulsed‐Wave Photobiomodulation Therapy on Human Spermatozoa</title><author>Espey, Burkhard T. ; Kielwein, Karin ; Ven, Hans ; Steger, Klaus ; Allam, Jean‐Pierre ; Paradowska‐Dogan, Agnieszka ; Ven, Katrin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3209-415b7afaac7919e4fda68d056377696652d0cc971b36d474670d48eb3fa9aead3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>acrosome</topic><topic>Asthenozoospermia - genetics</topic><topic>Asthenozoospermia - radiotherapy</topic><topic>Biomarkers</topic><topic>CASA</topic><topic>CD46</topic><topic>CD46 antigen</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA damage</topic><topic>DNA fragmentation</topic><topic>Electron transport</topic><topic>Ethical standards</topic><topic>Flow Cytometry</topic><topic>Fragmentation</topic><topic>Gene expression</topic><topic>Humans</topic><topic>Integrity</topic><topic>Irradiance</topic><topic>Lasers</topic><topic>Light therapy</topic><topic>LMqPCR</topic><topic>Low-Level Light Therapy</topic><topic>Male</topic><topic>male fertility</topic><topic>Mitochondria</topic><topic>Motility</topic><topic>Parameters</topic><topic>Patients</topic><topic>photobiomodulation</topic><topic>Polymerase chain reaction</topic><topic>Pulsed lasers</topic><topic>Radiation</topic><topic>Reproduction</topic><topic>Semen</topic><topic>Sperm</topic><topic>sperm motility</topic><topic>Sperm Motility - radiation effects</topic><topic>sperm velocity</topic><topic>Spermatozoa</topic><topic>Spermatozoa - metabolism</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Espey, Burkhard T.</creatorcontrib><creatorcontrib>Kielwein, Karin</creatorcontrib><creatorcontrib>Ven, Hans</creatorcontrib><creatorcontrib>Steger, Klaus</creatorcontrib><creatorcontrib>Allam, Jean‐Pierre</creatorcontrib><creatorcontrib>Paradowska‐Dogan, Agnieszka</creatorcontrib><creatorcontrib>Ven, Katrin</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Lasers in surgery and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Espey, Burkhard T.</au><au>Kielwein, Karin</au><au>Ven, Hans</au><au>Steger, Klaus</au><au>Allam, Jean‐Pierre</au><au>Paradowska‐Dogan, Agnieszka</au><au>Ven, Katrin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Pulsed‐Wave Photobiomodulation Therapy on Human Spermatozoa</atitle><jtitle>Lasers in surgery and medicine</jtitle><addtitle>Lasers Surg Med</addtitle><date>2022-04</date><risdate>2022</risdate><volume>54</volume><issue>4</issue><spage>540</spage><epage>553</epage><pages>540-553</pages><issn>0196-8092</issn><eissn>1096-9101</eissn><abstract>Background and Objectives Previous studies reported that photobiomodulation (PBM) positively affects the mitochondrial respiratory chain in sperm, resulting in improved motility and velocity. As laser settings are not yet fully established, the present study aimed at optimizing PBM on human sperm. In addition, possible side‐effects of PBM on sperm DNA fragmentation level and acrosomal integrity have been analyzed. Study Design/Materials and Methods A pulsed laser‐probe (wavelength 655 nm, output power 25 mW/cm², impulse duration 200 nanoseconds) was used. Native fresh liquefied semen samples underwent radiation with energy doses of 0 (control), 4, 6, and 10 J/cm². Sperm parameters were assessed at 0, 30, 60, 90, and 120 minutes after radiation using a computer‐assisted sperm analysis system. Motility and velocity of sperm from asthenozoospermic patients (n = 42) and normozoospermic controls (n = 22) were measured. The amount of DNA strand breaks was analyzed using ligation‐mediated quantitative polymerase chain reaction in patients with asthenozoospermia (n = 18) and normozoospermia (n = 13). Post‐irradiance acrosomal integrity was investigated using flow cytometry based on CD46 protein expression (n = 7). Results Exposure to laser energy‐doses of 4 and 6 J/cm² improved sperm motility and velocity in asthenozoospermic patients. PBM exhibited no significant effect on DNA fragmentation level and expression of CD46 serving as a biomarker for acrosome integrity. Conclusion PBM improves sperm motility parameters by maintaining DNA and acrosome integrity and, therefore, represents a promising new tool for assisted reproductive therapy. In particular, improving sperm motility in asthenozoospermic patients by PBM in future may contribute to increasing the chance for successful intrauterine insemination. The present trial has no clinical registration number, as only in vitro studies were performed. The study was approved by the local ethics committee and performed according to the Declaration of Helsinki. Lasers Surg. Med. © 2021 The Authors. Lasers in Surgery and Medicine published by Wiley Periodicals LLC.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33792933</pmid><doi>10.1002/lsm.23399</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4511-0065</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0196-8092
ispartof Lasers in surgery and medicine, 2022-04, Vol.54 (4), p.540-553
issn 0196-8092
1096-9101
language eng
recordid cdi_proquest_journals_2649002437
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects acrosome
Asthenozoospermia - genetics
Asthenozoospermia - radiotherapy
Biomarkers
CASA
CD46
CD46 antigen
Deoxyribonucleic acid
DNA
DNA damage
DNA fragmentation
Electron transport
Ethical standards
Flow Cytometry
Fragmentation
Gene expression
Humans
Integrity
Irradiance
Lasers
Light therapy
LMqPCR
Low-Level Light Therapy
Male
male fertility
Mitochondria
Motility
Parameters
Patients
photobiomodulation
Polymerase chain reaction
Pulsed lasers
Radiation
Reproduction
Semen
Sperm
sperm motility
Sperm Motility - radiation effects
sperm velocity
Spermatozoa
Spermatozoa - metabolism
Velocity
title Effects of Pulsed‐Wave Photobiomodulation Therapy on Human Spermatozoa
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A03%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Pulsed%E2%80%90Wave%20Photobiomodulation%20Therapy%20on%20Human%20Spermatozoa&rft.jtitle=Lasers%20in%20surgery%20and%20medicine&rft.au=Espey,%20Burkhard%20T.&rft.date=2022-04&rft.volume=54&rft.issue=4&rft.spage=540&rft.epage=553&rft.pages=540-553&rft.issn=0196-8092&rft.eissn=1096-9101&rft_id=info:doi/10.1002/lsm.23399&rft_dat=%3Cproquest_cross%3E2649002437%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2649002437&rft_id=info:pmid/33792933&rfr_iscdi=true