Propulsive Element Normal Force Based on Acceleration Measurements Experienced by a Subcarangiform Robotic Fish
The normal force exerted on a propulsive element is estimated based on acceleration measurements of an articulate-flexible propulsion mechanism in a subcarangiform swimming robotic fish. The propulsion mechanism is an articulating torso followed by a flexible caudal fin to provide thrust. The trunk...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent & robotic systems 2022-04, Vol.104 (4), Article 73 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Journal of intelligent & robotic systems |
container_volume | 104 |
creator | Von Borstel, Fernando D. Haro, Martha S. Villa-Medina, J. Francisco Gutiérrez, Joaquín |
description | The normal force exerted on a propulsive element is estimated based on acceleration measurements of an articulate-flexible propulsion mechanism in a subcarangiform swimming robotic fish. The propulsion mechanism is an articulating torso followed by a flexible caudal fin to provide thrust. The trunk is an assemblage of five ABS-plastic vertebrae driven by an actuator through a pair of wires, whereas the caudal fin is a silicone-rubber lunate-shaped tail coupled to the last vertebra. MEMS 3-axis sensors measured the linear acceleration experienced by the rigid head, articulated trunk, and compliant caudal fin at different undulation frequencies with the robotic fish prototype suspended in still water. The transverse acceleration measured was approximated as the reaction force exerted by the water on a propulsive element that accelerates the surrounding water. Subsequently, the caudal fin midline motion was analyzed by video processing to compare with the subcarangiform swimming kinematics model and to depict the normal force vectors in an undulation excursion. This study provides a feasible alternative to quantify the normal force generated by propulsive elements in bio-inspired propulsion mechanisms by using low-cost MEMS sensors to complement other well-suited techniques. |
doi_str_mv | 10.1007/s10846-022-01600-9 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2648810681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A729524056</galeid><sourcerecordid>A729524056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-ae6d0d92d78435b7b65633cf947f24bad8670121556d2b3768bcd42c3482932d3</originalsourceid><addsrcrecordid>eNp9kU1vFDEMhiMEEsvCH-AUifMU52MyyXGpdgtSoRUf5yiTeJZUs5Mlmanaf0_oIHFDPli2n9e29BLylsEFA-jeFwZaqgY4b4ApgMY8IxvWdqIBCeY52YDhrI6NeklelXIHAEa3ZkPSbU7nZSzxHul-xBNOM_2S8smN9JCyR_rBFQw0TXTnPY6Y3Rxr8RldWfITXuj-4Yw54uQr2D9SR78tvXfZTcc41FX0a-rTHD09xPLzNXkxuLHgm795S34c9t8vPzbXN1efLnfXjedaz41DFSAYHjotRdt3vWqVEH4wshu47F3QqgPGWduqwHvRKd37ILkXUnMjeBBb8m7de87p14JltndpyVM9abmSWjNQmlXqYqWObkQbpyHN2fkaAU_RpwmHWPu7jpuWS6gvbAlfBT6nUjIO9pzjyeVHy8D-ccKuTtjqhH1ywpoqEquoVHg6Yv73y39UvwFI0YtW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2648810681</pqid></control><display><type>article</type><title>Propulsive Element Normal Force Based on Acceleration Measurements Experienced by a Subcarangiform Robotic Fish</title><source>Springer Nature - Complete Springer Journals</source><creator>Von Borstel, Fernando D. ; Haro, Martha S. ; Villa-Medina, J. Francisco ; Gutiérrez, Joaquín</creator><creatorcontrib>Von Borstel, Fernando D. ; Haro, Martha S. ; Villa-Medina, J. Francisco ; Gutiérrez, Joaquín</creatorcontrib><description>The normal force exerted on a propulsive element is estimated based on acceleration measurements of an articulate-flexible propulsion mechanism in a subcarangiform swimming robotic fish. The propulsion mechanism is an articulating torso followed by a flexible caudal fin to provide thrust. The trunk is an assemblage of five ABS-plastic vertebrae driven by an actuator through a pair of wires, whereas the caudal fin is a silicone-rubber lunate-shaped tail coupled to the last vertebra. MEMS 3-axis sensors measured the linear acceleration experienced by the rigid head, articulated trunk, and compliant caudal fin at different undulation frequencies with the robotic fish prototype suspended in still water. The transverse acceleration measured was approximated as the reaction force exerted by the water on a propulsive element that accelerates the surrounding water. Subsequently, the caudal fin midline motion was analyzed by video processing to compare with the subcarangiform swimming kinematics model and to depict the normal force vectors in an undulation excursion. This study provides a feasible alternative to quantify the normal force generated by propulsive elements in bio-inspired propulsion mechanisms by using low-cost MEMS sensors to complement other well-suited techniques.</description><identifier>ISSN: 0921-0296</identifier><identifier>EISSN: 1573-0409</identifier><identifier>DOI: 10.1007/s10846-022-01600-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Actuators ; Analysis ; Artificial Intelligence ; Control ; Electrical Engineering ; Engineering ; Fish ; Image processing ; Kinematics ; Measurement ; Mechanical Engineering ; Mechatronics ; Microelectromechanical systems ; Propulsion ; Robotics ; Sensors ; Short Paper ; Swimming ; Three axis ; Torso ; Transverse acceleration ; Vertebrae ; Video</subject><ispartof>Journal of intelligent & robotic systems, 2022-04, Vol.104 (4), Article 73</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-ae6d0d92d78435b7b65633cf947f24bad8670121556d2b3768bcd42c3482932d3</citedby><cites>FETCH-LOGICAL-c288t-ae6d0d92d78435b7b65633cf947f24bad8670121556d2b3768bcd42c3482932d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10846-022-01600-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10846-022-01600-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Von Borstel, Fernando D.</creatorcontrib><creatorcontrib>Haro, Martha S.</creatorcontrib><creatorcontrib>Villa-Medina, J. Francisco</creatorcontrib><creatorcontrib>Gutiérrez, Joaquín</creatorcontrib><title>Propulsive Element Normal Force Based on Acceleration Measurements Experienced by a Subcarangiform Robotic Fish</title><title>Journal of intelligent & robotic systems</title><addtitle>J Intell Robot Syst</addtitle><description>The normal force exerted on a propulsive element is estimated based on acceleration measurements of an articulate-flexible propulsion mechanism in a subcarangiform swimming robotic fish. The propulsion mechanism is an articulating torso followed by a flexible caudal fin to provide thrust. The trunk is an assemblage of five ABS-plastic vertebrae driven by an actuator through a pair of wires, whereas the caudal fin is a silicone-rubber lunate-shaped tail coupled to the last vertebra. MEMS 3-axis sensors measured the linear acceleration experienced by the rigid head, articulated trunk, and compliant caudal fin at different undulation frequencies with the robotic fish prototype suspended in still water. The transverse acceleration measured was approximated as the reaction force exerted by the water on a propulsive element that accelerates the surrounding water. Subsequently, the caudal fin midline motion was analyzed by video processing to compare with the subcarangiform swimming kinematics model and to depict the normal force vectors in an undulation excursion. This study provides a feasible alternative to quantify the normal force generated by propulsive elements in bio-inspired propulsion mechanisms by using low-cost MEMS sensors to complement other well-suited techniques.</description><subject>Actuators</subject><subject>Analysis</subject><subject>Artificial Intelligence</subject><subject>Control</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Fish</subject><subject>Image processing</subject><subject>Kinematics</subject><subject>Measurement</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Microelectromechanical systems</subject><subject>Propulsion</subject><subject>Robotics</subject><subject>Sensors</subject><subject>Short Paper</subject><subject>Swimming</subject><subject>Three axis</subject><subject>Torso</subject><subject>Transverse acceleration</subject><subject>Vertebrae</subject><subject>Video</subject><issn>0921-0296</issn><issn>1573-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU1vFDEMhiMEEsvCH-AUifMU52MyyXGpdgtSoRUf5yiTeJZUs5Mlmanaf0_oIHFDPli2n9e29BLylsEFA-jeFwZaqgY4b4ApgMY8IxvWdqIBCeY52YDhrI6NeklelXIHAEa3ZkPSbU7nZSzxHul-xBNOM_2S8smN9JCyR_rBFQw0TXTnPY6Y3Rxr8RldWfITXuj-4Yw54uQr2D9SR78tvXfZTcc41FX0a-rTHD09xPLzNXkxuLHgm795S34c9t8vPzbXN1efLnfXjedaz41DFSAYHjotRdt3vWqVEH4wshu47F3QqgPGWduqwHvRKd37ILkXUnMjeBBb8m7de87p14JltndpyVM9abmSWjNQmlXqYqWObkQbpyHN2fkaAU_RpwmHWPu7jpuWS6gvbAlfBT6nUjIO9pzjyeVHy8D-ccKuTtjqhH1ywpoqEquoVHg6Yv73y39UvwFI0YtW</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Von Borstel, Fernando D.</creator><creator>Haro, Martha S.</creator><creator>Villa-Medina, J. Francisco</creator><creator>Gutiérrez, Joaquín</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20220401</creationdate><title>Propulsive Element Normal Force Based on Acceleration Measurements Experienced by a Subcarangiform Robotic Fish</title><author>Von Borstel, Fernando D. ; Haro, Martha S. ; Villa-Medina, J. Francisco ; Gutiérrez, Joaquín</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-ae6d0d92d78435b7b65633cf947f24bad8670121556d2b3768bcd42c3482932d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Actuators</topic><topic>Analysis</topic><topic>Artificial Intelligence</topic><topic>Control</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Fish</topic><topic>Image processing</topic><topic>Kinematics</topic><topic>Measurement</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Microelectromechanical systems</topic><topic>Propulsion</topic><topic>Robotics</topic><topic>Sensors</topic><topic>Short Paper</topic><topic>Swimming</topic><topic>Three axis</topic><topic>Torso</topic><topic>Transverse acceleration</topic><topic>Vertebrae</topic><topic>Video</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Von Borstel, Fernando D.</creatorcontrib><creatorcontrib>Haro, Martha S.</creatorcontrib><creatorcontrib>Villa-Medina, J. Francisco</creatorcontrib><creatorcontrib>Gutiérrez, Joaquín</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of intelligent & robotic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Von Borstel, Fernando D.</au><au>Haro, Martha S.</au><au>Villa-Medina, J. Francisco</au><au>Gutiérrez, Joaquín</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Propulsive Element Normal Force Based on Acceleration Measurements Experienced by a Subcarangiform Robotic Fish</atitle><jtitle>Journal of intelligent & robotic systems</jtitle><stitle>J Intell Robot Syst</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>104</volume><issue>4</issue><artnum>73</artnum><issn>0921-0296</issn><eissn>1573-0409</eissn><abstract>The normal force exerted on a propulsive element is estimated based on acceleration measurements of an articulate-flexible propulsion mechanism in a subcarangiform swimming robotic fish. The propulsion mechanism is an articulating torso followed by a flexible caudal fin to provide thrust. The trunk is an assemblage of five ABS-plastic vertebrae driven by an actuator through a pair of wires, whereas the caudal fin is a silicone-rubber lunate-shaped tail coupled to the last vertebra. MEMS 3-axis sensors measured the linear acceleration experienced by the rigid head, articulated trunk, and compliant caudal fin at different undulation frequencies with the robotic fish prototype suspended in still water. The transverse acceleration measured was approximated as the reaction force exerted by the water on a propulsive element that accelerates the surrounding water. Subsequently, the caudal fin midline motion was analyzed by video processing to compare with the subcarangiform swimming kinematics model and to depict the normal force vectors in an undulation excursion. This study provides a feasible alternative to quantify the normal force generated by propulsive elements in bio-inspired propulsion mechanisms by using low-cost MEMS sensors to complement other well-suited techniques.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10846-022-01600-9</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-0296 |
ispartof | Journal of intelligent & robotic systems, 2022-04, Vol.104 (4), Article 73 |
issn | 0921-0296 1573-0409 |
language | eng |
recordid | cdi_proquest_journals_2648810681 |
source | Springer Nature - Complete Springer Journals |
subjects | Actuators Analysis Artificial Intelligence Control Electrical Engineering Engineering Fish Image processing Kinematics Measurement Mechanical Engineering Mechatronics Microelectromechanical systems Propulsion Robotics Sensors Short Paper Swimming Three axis Torso Transverse acceleration Vertebrae Video |
title | Propulsive Element Normal Force Based on Acceleration Measurements Experienced by a Subcarangiform Robotic Fish |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A00%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Propulsive%20Element%20Normal%20Force%20Based%20on%20Acceleration%20Measurements%20Experienced%20by%20a%20Subcarangiform%20Robotic%20Fish&rft.jtitle=Journal%20of%20intelligent%20&%20robotic%20systems&rft.au=Von%20Borstel,%20Fernando%20D.&rft.date=2022-04-01&rft.volume=104&rft.issue=4&rft.artnum=73&rft.issn=0921-0296&rft.eissn=1573-0409&rft_id=info:doi/10.1007/s10846-022-01600-9&rft_dat=%3Cgale_proqu%3EA729524056%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2648810681&rft_id=info:pmid/&rft_galeid=A729524056&rfr_iscdi=true |