An Improved Force Characteristic Curve Fitting Algorithm of Urban Rail Vehicles

In this paper, an improved force characteristic curve fitting memetic algorithm of urban rail vehicles is proposed for establishing precise train operation models. In order to improve the memetic algorithm global convergence, three strategies are adopted. In the improved memetic algorithm framework,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sensors 2022-04, Vol.2022, p.1-13
Hauptverfasser: Wang, Longda, Wang, Xingcheng, Liu, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue
container_start_page 1
container_title Journal of sensors
container_volume 2022
creator Wang, Longda
Wang, Xingcheng
Liu, Gang
description In this paper, an improved force characteristic curve fitting memetic algorithm of urban rail vehicles is proposed for establishing precise train operation models. In order to improve the memetic algorithm global convergence, three strategies are adopted. In the improved memetic algorithm framework, an improved moth-flame optimization is used in global search; an improved simulated annealing is applied in local search; a new learning mechanism incorporated into reverse learning is adopted. Experimental simulation results under real-time data monitoring system show that the improved memetic algorithm proposed in this paper can increase the optimization performance effectively so more perfect force characteristic curve fitting effort can be obtained, and the calculated average force error and max running distance error can be reduced effectively. Moreover, the above relative results indicate that the train energy consumption model using the improved force characteristic curve fitting algorithm can obtain more precise energy consumption. Obviously, the improved force characteristic curve fitting algorithm can effectively improve the curve fitting precision.
doi_str_mv 10.1155/2022/9910982
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2648809541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2648809541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-15f0501c13332e102bce1b5e50d58a770f02c02efce00a94ec58231366826df03</originalsourceid><addsrcrecordid>eNp9kFFLwzAUhYMoOKdv_oCAj1p3kzRp-jiK08FgIE58K1l6u2Z07Uy6Df-9HRs--nTPw8c5l4-QewbPjEk54sD5KE0ZpJpfkAFTOokSrvTlX5Zf1-QmhDWAEokQAzIfN3S62fp2jwWdtN4izSrjje3Qu9A5S7Od3yOduK5zzYqO61XrXVdtaFvShV-ahr4bV9NPrJytMdySq9LUAe_Od0gWk5eP7C2azV-n2XgW2RjiLmKyBAnMMiEERwZ8aZEtJUoopDZJAiVwCxxLiwAmjdFKzQUTSmmuihLEkDycevvXv3cYunzd7nzTT-ZcxVpDKmPWU08nyvo2BI9lvvVuY_xPziA_KsuPyvKzsh5_POGVawpzcP_Tv1cJaWs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2648809541</pqid></control><display><type>article</type><title>An Improved Force Characteristic Curve Fitting Algorithm of Urban Rail Vehicles</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library Open Access</source><source>Alma/SFX Local Collection</source><creator>Wang, Longda ; Wang, Xingcheng ; Liu, Gang</creator><contributor>Pau, Giovanni ; Giovanni Pau</contributor><creatorcontrib>Wang, Longda ; Wang, Xingcheng ; Liu, Gang ; Pau, Giovanni ; Giovanni Pau</creatorcontrib><description>In this paper, an improved force characteristic curve fitting memetic algorithm of urban rail vehicles is proposed for establishing precise train operation models. In order to improve the memetic algorithm global convergence, three strategies are adopted. In the improved memetic algorithm framework, an improved moth-flame optimization is used in global search; an improved simulated annealing is applied in local search; a new learning mechanism incorporated into reverse learning is adopted. Experimental simulation results under real-time data monitoring system show that the improved memetic algorithm proposed in this paper can increase the optimization performance effectively so more perfect force characteristic curve fitting effort can be obtained, and the calculated average force error and max running distance error can be reduced effectively. Moreover, the above relative results indicate that the train energy consumption model using the improved force characteristic curve fitting algorithm can obtain more precise energy consumption. Obviously, the improved force characteristic curve fitting algorithm can effectively improve the curve fitting precision.</description><identifier>ISSN: 1687-725X</identifier><identifier>EISSN: 1687-7268</identifier><identifier>DOI: 10.1155/2022/9910982</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Accuracy ; Algorithms ; Butterflies &amp; moths ; Curve fitting ; Decomposition ; Design ; Energy consumption ; Error reduction ; Genetic algorithms ; Learning ; Mathematical models ; Optimization ; Optimization algorithms ; Parameter estimation ; Parameter identification ; Power ; Simulated annealing ; Simulation ; Traveling salesman problem ; Urban rail ; Vehicles ; Velocity</subject><ispartof>Journal of sensors, 2022-04, Vol.2022, p.1-13</ispartof><rights>Copyright © 2022 Longda Wang et al.</rights><rights>Copyright © 2022 Longda Wang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-15f0501c13332e102bce1b5e50d58a770f02c02efce00a94ec58231366826df03</citedby><cites>FETCH-LOGICAL-c404t-15f0501c13332e102bce1b5e50d58a770f02c02efce00a94ec58231366826df03</cites><orcidid>0000-0002-7226-5900 ; 0000-0002-6239-7889 ; 0000-0003-4030-8125</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><contributor>Pau, Giovanni</contributor><contributor>Giovanni Pau</contributor><creatorcontrib>Wang, Longda</creatorcontrib><creatorcontrib>Wang, Xingcheng</creatorcontrib><creatorcontrib>Liu, Gang</creatorcontrib><title>An Improved Force Characteristic Curve Fitting Algorithm of Urban Rail Vehicles</title><title>Journal of sensors</title><description>In this paper, an improved force characteristic curve fitting memetic algorithm of urban rail vehicles is proposed for establishing precise train operation models. In order to improve the memetic algorithm global convergence, three strategies are adopted. In the improved memetic algorithm framework, an improved moth-flame optimization is used in global search; an improved simulated annealing is applied in local search; a new learning mechanism incorporated into reverse learning is adopted. Experimental simulation results under real-time data monitoring system show that the improved memetic algorithm proposed in this paper can increase the optimization performance effectively so more perfect force characteristic curve fitting effort can be obtained, and the calculated average force error and max running distance error can be reduced effectively. Moreover, the above relative results indicate that the train energy consumption model using the improved force characteristic curve fitting algorithm can obtain more precise energy consumption. Obviously, the improved force characteristic curve fitting algorithm can effectively improve the curve fitting precision.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Butterflies &amp; moths</subject><subject>Curve fitting</subject><subject>Decomposition</subject><subject>Design</subject><subject>Energy consumption</subject><subject>Error reduction</subject><subject>Genetic algorithms</subject><subject>Learning</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>Power</subject><subject>Simulated annealing</subject><subject>Simulation</subject><subject>Traveling salesman problem</subject><subject>Urban rail</subject><subject>Vehicles</subject><subject>Velocity</subject><issn>1687-725X</issn><issn>1687-7268</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kFFLwzAUhYMoOKdv_oCAj1p3kzRp-jiK08FgIE58K1l6u2Z07Uy6Df-9HRs--nTPw8c5l4-QewbPjEk54sD5KE0ZpJpfkAFTOokSrvTlX5Zf1-QmhDWAEokQAzIfN3S62fp2jwWdtN4izSrjje3Qu9A5S7Od3yOduK5zzYqO61XrXVdtaFvShV-ahr4bV9NPrJytMdySq9LUAe_Od0gWk5eP7C2azV-n2XgW2RjiLmKyBAnMMiEERwZ8aZEtJUoopDZJAiVwCxxLiwAmjdFKzQUTSmmuihLEkDycevvXv3cYunzd7nzTT-ZcxVpDKmPWU08nyvo2BI9lvvVuY_xPziA_KsuPyvKzsh5_POGVawpzcP_Tv1cJaWs</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Wang, Longda</creator><creator>Wang, Xingcheng</creator><creator>Liu, Gang</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7U5</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-7226-5900</orcidid><orcidid>https://orcid.org/0000-0002-6239-7889</orcidid><orcidid>https://orcid.org/0000-0003-4030-8125</orcidid></search><sort><creationdate>20220401</creationdate><title>An Improved Force Characteristic Curve Fitting Algorithm of Urban Rail Vehicles</title><author>Wang, Longda ; Wang, Xingcheng ; Liu, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-15f0501c13332e102bce1b5e50d58a770f02c02efce00a94ec58231366826df03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Butterflies &amp; moths</topic><topic>Curve fitting</topic><topic>Decomposition</topic><topic>Design</topic><topic>Energy consumption</topic><topic>Error reduction</topic><topic>Genetic algorithms</topic><topic>Learning</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>Power</topic><topic>Simulated annealing</topic><topic>Simulation</topic><topic>Traveling salesman problem</topic><topic>Urban rail</topic><topic>Vehicles</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Longda</creatorcontrib><creatorcontrib>Wang, Xingcheng</creatorcontrib><creatorcontrib>Liu, Gang</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Longda</au><au>Wang, Xingcheng</au><au>Liu, Gang</au><au>Pau, Giovanni</au><au>Giovanni Pau</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Improved Force Characteristic Curve Fitting Algorithm of Urban Rail Vehicles</atitle><jtitle>Journal of sensors</jtitle><date>2022-04-01</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1687-725X</issn><eissn>1687-7268</eissn><abstract>In this paper, an improved force characteristic curve fitting memetic algorithm of urban rail vehicles is proposed for establishing precise train operation models. In order to improve the memetic algorithm global convergence, three strategies are adopted. In the improved memetic algorithm framework, an improved moth-flame optimization is used in global search; an improved simulated annealing is applied in local search; a new learning mechanism incorporated into reverse learning is adopted. Experimental simulation results under real-time data monitoring system show that the improved memetic algorithm proposed in this paper can increase the optimization performance effectively so more perfect force characteristic curve fitting effort can be obtained, and the calculated average force error and max running distance error can be reduced effectively. Moreover, the above relative results indicate that the train energy consumption model using the improved force characteristic curve fitting algorithm can obtain more precise energy consumption. Obviously, the improved force characteristic curve fitting algorithm can effectively improve the curve fitting precision.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/9910982</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7226-5900</orcidid><orcidid>https://orcid.org/0000-0002-6239-7889</orcidid><orcidid>https://orcid.org/0000-0003-4030-8125</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-725X
ispartof Journal of sensors, 2022-04, Vol.2022, p.1-13
issn 1687-725X
1687-7268
language eng
recordid cdi_proquest_journals_2648809541
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library Open Access; Alma/SFX Local Collection
subjects Accuracy
Algorithms
Butterflies & moths
Curve fitting
Decomposition
Design
Energy consumption
Error reduction
Genetic algorithms
Learning
Mathematical models
Optimization
Optimization algorithms
Parameter estimation
Parameter identification
Power
Simulated annealing
Simulation
Traveling salesman problem
Urban rail
Vehicles
Velocity
title An Improved Force Characteristic Curve Fitting Algorithm of Urban Rail Vehicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T09%3A42%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Improved%20Force%20Characteristic%20Curve%20Fitting%20Algorithm%20of%20Urban%20Rail%20Vehicles&rft.jtitle=Journal%20of%20sensors&rft.au=Wang,%20Longda&rft.date=2022-04-01&rft.volume=2022&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1687-725X&rft.eissn=1687-7268&rft_id=info:doi/10.1155/2022/9910982&rft_dat=%3Cproquest_cross%3E2648809541%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2648809541&rft_id=info:pmid/&rfr_iscdi=true