An empirical approach for deriving specific inland water quality parameters from high spatio-spectral resolution image

Inland lake of Vembanad has benefited from continuous monitoring to evaluate water quality which has declined due to increased anthropogenic activities and climate change. Remote sensing techniques can be used to estimate and monitor inland water quality both spatially and temporally. An empirical m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wetlands ecology and management 2022-04, Vol.30 (2), p.405-422
Hauptverfasser: Sivakumar, R., Prasanth, B. R. Sri Vishnu, Ramaraj, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 422
container_issue 2
container_start_page 405
container_title Wetlands ecology and management
container_volume 30
creator Sivakumar, R.
Prasanth, B. R. Sri Vishnu
Ramaraj, M.
description Inland lake of Vembanad has benefited from continuous monitoring to evaluate water quality which has declined due to increased anthropogenic activities and climate change. Remote sensing techniques can be used to estimate and monitor inland water quality both spatially and temporally. An empirical model is presented in Vemaband lake that retrieves the specific water quality parameters through correlations between various spectral wavelengths of Sentinel-2MSI (S2MSI) with field-measured water quality parameters. This approach includes the combinations of various bands, band ratios, and band arithmetic computation of satellite sensors of spectral datasets. The specific inland water quality parameters such as chlorophyll- a (chl- a ), total suspended solids (TSS), turbidity, and secchi disc depth (SDD) were retrieved from the developed water quality model through Sentinel-2A remote sensing reflectance. The result illustrates that Specific Inland Water Quality Parameters (SIWQP) strongly correlated with S2MSI reflection spectral wavelengths. The SIWQP models are constructed for TSS (R 2  = 0.8008), Chl- a (R 2  = 0.8055), Turbidity (R 2  = 0.6329) and SDD (R 2  = 0.7174).The spatial distribution of SIWQPs in Vembanad lake for March 2018 is mapped and shows the lake's water quality distribution. The research from Sentinel-2, MSI has potential and is appropriate in high spectral and spatial characteristics for retrieving and continuous monitoring of water quality parameters in the regional scale of inland water bodies.
doi_str_mv 10.1007/s11273-022-09874-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2648632478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2648632478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-5012851afc619cd9bd5b8b19e75545948b0071c6a4f662c7e57d70297e3f4dc13</originalsourceid><addsrcrecordid>eNp9kM1OAyEURonRxFp9AVckrlFgYBiWTaPWpIkbXROGgSnN_BVmavr2UsfEnSuSm-98l3sAuCf4kWAsniIhVGQIU4qwLARD7AIsCBcUySJjl2CBJc0QK3JyDW5i3GOcMEkW4LjqoG0HH7zRDdTDEHptdtD1AVY2-KPvahgHa7zzBvqu0V0Fv_RoAzxMuvHjCQ466NamSYQu9C3c-XqXED36Hp3JMaTiYGPfTGnUQd_q2t6CK6ebaO9-3yX4fHn-WG_Q9v31bb3aIkOZHBHHhBacaGdyIk0ly4qXRUmkFZwzLllRpuOJyTVzeU6NsFxUAlMpbOZYZUi2BA9zb7rrMNk4qn0_hS6tVDRPOjLKRJFSdE6Z0McYrFNDSN8MJ0WwOvtVs1-V_Kofv4olKJuhmMJdbcNf9T_UN_Dgf6E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2648632478</pqid></control><display><type>article</type><title>An empirical approach for deriving specific inland water quality parameters from high spatio-spectral resolution image</title><source>Springer Nature - Complete Springer Journals</source><creator>Sivakumar, R. ; Prasanth, B. R. Sri Vishnu ; Ramaraj, M.</creator><creatorcontrib>Sivakumar, R. ; Prasanth, B. R. Sri Vishnu ; Ramaraj, M.</creatorcontrib><description>Inland lake of Vembanad has benefited from continuous monitoring to evaluate water quality which has declined due to increased anthropogenic activities and climate change. Remote sensing techniques can be used to estimate and monitor inland water quality both spatially and temporally. An empirical model is presented in Vemaband lake that retrieves the specific water quality parameters through correlations between various spectral wavelengths of Sentinel-2MSI (S2MSI) with field-measured water quality parameters. This approach includes the combinations of various bands, band ratios, and band arithmetic computation of satellite sensors of spectral datasets. The specific inland water quality parameters such as chlorophyll- a (chl- a ), total suspended solids (TSS), turbidity, and secchi disc depth (SDD) were retrieved from the developed water quality model through Sentinel-2A remote sensing reflectance. The result illustrates that Specific Inland Water Quality Parameters (SIWQP) strongly correlated with S2MSI reflection spectral wavelengths. The SIWQP models are constructed for TSS (R 2  = 0.8008), Chl- a (R 2  = 0.8055), Turbidity (R 2  = 0.6329) and SDD (R 2  = 0.7174).The spatial distribution of SIWQPs in Vembanad lake for March 2018 is mapped and shows the lake's water quality distribution. The research from Sentinel-2, MSI has potential and is appropriate in high spectral and spatial characteristics for retrieving and continuous monitoring of water quality parameters in the regional scale of inland water bodies.</description><identifier>ISSN: 0923-4861</identifier><identifier>EISSN: 1572-9834</identifier><identifier>DOI: 10.1007/s11273-022-09874-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Anthropogenic factors ; Biomedical and Life Sciences ; Chlorophyll ; Chlorophyll a ; Climate change ; Computation ; Conservation Biology/Ecology ; Distribution ; Environmental Law/Policy/Ecojustice ; Freshwater &amp; Marine Ecology ; Hydrology/Water Resources ; Image quality ; Inland waters ; Lakes ; Life Sciences ; Marine &amp; Freshwater Sciences ; Mathematical models ; Mathematics ; Original Paper ; Parameters ; Reflectance ; Remote monitoring ; Remote sensing ; Secchi discs ; Solid suspensions ; Spatial distribution ; Spectra ; Spectral resolution ; Suspended particulate matter ; Total suspended solids ; Turbidity ; Water depth ; Water monitoring ; Water quality ; Water quality management ; Water quality measurements ; Water Quality/Water Pollution ; Wave reflection ; Wavelengths</subject><ispartof>Wetlands ecology and management, 2022-04, Vol.30 (2), p.405-422</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-5012851afc619cd9bd5b8b19e75545948b0071c6a4f662c7e57d70297e3f4dc13</citedby><cites>FETCH-LOGICAL-c249t-5012851afc619cd9bd5b8b19e75545948b0071c6a4f662c7e57d70297e3f4dc13</cites><orcidid>0000-0002-2060-2194</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11273-022-09874-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11273-022-09874-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Sivakumar, R.</creatorcontrib><creatorcontrib>Prasanth, B. R. Sri Vishnu</creatorcontrib><creatorcontrib>Ramaraj, M.</creatorcontrib><title>An empirical approach for deriving specific inland water quality parameters from high spatio-spectral resolution image</title><title>Wetlands ecology and management</title><addtitle>Wetlands Ecol Manage</addtitle><description>Inland lake of Vembanad has benefited from continuous monitoring to evaluate water quality which has declined due to increased anthropogenic activities and climate change. Remote sensing techniques can be used to estimate and monitor inland water quality both spatially and temporally. An empirical model is presented in Vemaband lake that retrieves the specific water quality parameters through correlations between various spectral wavelengths of Sentinel-2MSI (S2MSI) with field-measured water quality parameters. This approach includes the combinations of various bands, band ratios, and band arithmetic computation of satellite sensors of spectral datasets. The specific inland water quality parameters such as chlorophyll- a (chl- a ), total suspended solids (TSS), turbidity, and secchi disc depth (SDD) were retrieved from the developed water quality model through Sentinel-2A remote sensing reflectance. The result illustrates that Specific Inland Water Quality Parameters (SIWQP) strongly correlated with S2MSI reflection spectral wavelengths. The SIWQP models are constructed for TSS (R 2  = 0.8008), Chl- a (R 2  = 0.8055), Turbidity (R 2  = 0.6329) and SDD (R 2  = 0.7174).The spatial distribution of SIWQPs in Vembanad lake for March 2018 is mapped and shows the lake's water quality distribution. The research from Sentinel-2, MSI has potential and is appropriate in high spectral and spatial characteristics for retrieving and continuous monitoring of water quality parameters in the regional scale of inland water bodies.</description><subject>Anthropogenic factors</subject><subject>Biomedical and Life Sciences</subject><subject>Chlorophyll</subject><subject>Chlorophyll a</subject><subject>Climate change</subject><subject>Computation</subject><subject>Conservation Biology/Ecology</subject><subject>Distribution</subject><subject>Environmental Law/Policy/Ecojustice</subject><subject>Freshwater &amp; Marine Ecology</subject><subject>Hydrology/Water Resources</subject><subject>Image quality</subject><subject>Inland waters</subject><subject>Lakes</subject><subject>Life Sciences</subject><subject>Marine &amp; Freshwater Sciences</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Original Paper</subject><subject>Parameters</subject><subject>Reflectance</subject><subject>Remote monitoring</subject><subject>Remote sensing</subject><subject>Secchi discs</subject><subject>Solid suspensions</subject><subject>Spatial distribution</subject><subject>Spectra</subject><subject>Spectral resolution</subject><subject>Suspended particulate matter</subject><subject>Total suspended solids</subject><subject>Turbidity</subject><subject>Water depth</subject><subject>Water monitoring</subject><subject>Water quality</subject><subject>Water quality management</subject><subject>Water quality measurements</subject><subject>Water Quality/Water Pollution</subject><subject>Wave reflection</subject><subject>Wavelengths</subject><issn>0923-4861</issn><issn>1572-9834</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kM1OAyEURonRxFp9AVckrlFgYBiWTaPWpIkbXROGgSnN_BVmavr2UsfEnSuSm-98l3sAuCf4kWAsniIhVGQIU4qwLARD7AIsCBcUySJjl2CBJc0QK3JyDW5i3GOcMEkW4LjqoG0HH7zRDdTDEHptdtD1AVY2-KPvahgHa7zzBvqu0V0Fv_RoAzxMuvHjCQ466NamSYQu9C3c-XqXED36Hp3JMaTiYGPfTGnUQd_q2t6CK6ebaO9-3yX4fHn-WG_Q9v31bb3aIkOZHBHHhBacaGdyIk0ly4qXRUmkFZwzLllRpuOJyTVzeU6NsFxUAlMpbOZYZUi2BA9zb7rrMNk4qn0_hS6tVDRPOjLKRJFSdE6Z0McYrFNDSN8MJ0WwOvtVs1-V_Kofv4olKJuhmMJdbcNf9T_UN_Dgf6E</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Sivakumar, R.</creator><creator>Prasanth, B. R. Sri Vishnu</creator><creator>Ramaraj, M.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7U9</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H94</scope><scope>H97</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-2060-2194</orcidid></search><sort><creationdate>20220401</creationdate><title>An empirical approach for deriving specific inland water quality parameters from high spatio-spectral resolution image</title><author>Sivakumar, R. ; Prasanth, B. R. Sri Vishnu ; Ramaraj, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-5012851afc619cd9bd5b8b19e75545948b0071c6a4f662c7e57d70297e3f4dc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anthropogenic factors</topic><topic>Biomedical and Life Sciences</topic><topic>Chlorophyll</topic><topic>Chlorophyll a</topic><topic>Climate change</topic><topic>Computation</topic><topic>Conservation Biology/Ecology</topic><topic>Distribution</topic><topic>Environmental Law/Policy/Ecojustice</topic><topic>Freshwater &amp; Marine Ecology</topic><topic>Hydrology/Water Resources</topic><topic>Image quality</topic><topic>Inland waters</topic><topic>Lakes</topic><topic>Life Sciences</topic><topic>Marine &amp; Freshwater Sciences</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Original Paper</topic><topic>Parameters</topic><topic>Reflectance</topic><topic>Remote monitoring</topic><topic>Remote sensing</topic><topic>Secchi discs</topic><topic>Solid suspensions</topic><topic>Spatial distribution</topic><topic>Spectra</topic><topic>Spectral resolution</topic><topic>Suspended particulate matter</topic><topic>Total suspended solids</topic><topic>Turbidity</topic><topic>Water depth</topic><topic>Water monitoring</topic><topic>Water quality</topic><topic>Water quality management</topic><topic>Water quality measurements</topic><topic>Water Quality/Water Pollution</topic><topic>Wave reflection</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sivakumar, R.</creatorcontrib><creatorcontrib>Prasanth, B. R. Sri Vishnu</creatorcontrib><creatorcontrib>Ramaraj, M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Wetlands ecology and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sivakumar, R.</au><au>Prasanth, B. R. Sri Vishnu</au><au>Ramaraj, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An empirical approach for deriving specific inland water quality parameters from high spatio-spectral resolution image</atitle><jtitle>Wetlands ecology and management</jtitle><stitle>Wetlands Ecol Manage</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>30</volume><issue>2</issue><spage>405</spage><epage>422</epage><pages>405-422</pages><issn>0923-4861</issn><eissn>1572-9834</eissn><abstract>Inland lake of Vembanad has benefited from continuous monitoring to evaluate water quality which has declined due to increased anthropogenic activities and climate change. Remote sensing techniques can be used to estimate and monitor inland water quality both spatially and temporally. An empirical model is presented in Vemaband lake that retrieves the specific water quality parameters through correlations between various spectral wavelengths of Sentinel-2MSI (S2MSI) with field-measured water quality parameters. This approach includes the combinations of various bands, band ratios, and band arithmetic computation of satellite sensors of spectral datasets. The specific inland water quality parameters such as chlorophyll- a (chl- a ), total suspended solids (TSS), turbidity, and secchi disc depth (SDD) were retrieved from the developed water quality model through Sentinel-2A remote sensing reflectance. The result illustrates that Specific Inland Water Quality Parameters (SIWQP) strongly correlated with S2MSI reflection spectral wavelengths. The SIWQP models are constructed for TSS (R 2  = 0.8008), Chl- a (R 2  = 0.8055), Turbidity (R 2  = 0.6329) and SDD (R 2  = 0.7174).The spatial distribution of SIWQPs in Vembanad lake for March 2018 is mapped and shows the lake's water quality distribution. The research from Sentinel-2, MSI has potential and is appropriate in high spectral and spatial characteristics for retrieving and continuous monitoring of water quality parameters in the regional scale of inland water bodies.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11273-022-09874-4</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-2060-2194</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0923-4861
ispartof Wetlands ecology and management, 2022-04, Vol.30 (2), p.405-422
issn 0923-4861
1572-9834
language eng
recordid cdi_proquest_journals_2648632478
source Springer Nature - Complete Springer Journals
subjects Anthropogenic factors
Biomedical and Life Sciences
Chlorophyll
Chlorophyll a
Climate change
Computation
Conservation Biology/Ecology
Distribution
Environmental Law/Policy/Ecojustice
Freshwater & Marine Ecology
Hydrology/Water Resources
Image quality
Inland waters
Lakes
Life Sciences
Marine & Freshwater Sciences
Mathematical models
Mathematics
Original Paper
Parameters
Reflectance
Remote monitoring
Remote sensing
Secchi discs
Solid suspensions
Spatial distribution
Spectra
Spectral resolution
Suspended particulate matter
Total suspended solids
Turbidity
Water depth
Water monitoring
Water quality
Water quality management
Water quality measurements
Water Quality/Water Pollution
Wave reflection
Wavelengths
title An empirical approach for deriving specific inland water quality parameters from high spatio-spectral resolution image
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A27%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20empirical%20approach%20for%20deriving%20specific%20inland%20water%20quality%20parameters%20from%20high%20spatio-spectral%20resolution%20image&rft.jtitle=Wetlands%20ecology%20and%20management&rft.au=Sivakumar,%20R.&rft.date=2022-04-01&rft.volume=30&rft.issue=2&rft.spage=405&rft.epage=422&rft.pages=405-422&rft.issn=0923-4861&rft.eissn=1572-9834&rft_id=info:doi/10.1007/s11273-022-09874-4&rft_dat=%3Cproquest_cross%3E2648632478%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2648632478&rft_id=info:pmid/&rfr_iscdi=true