Design, simulation and application of cell migration of multi-channel microfluidic chip
Cell migration refers to the directional migration of cells towards a specific chemical concentration gradient, which plays a crucial role in embryonic development, wound healing, and tumor metastasis. Most of the current research methods have low throughput, and it is difficult to comprehensively c...
Gespeichert in:
Veröffentlicht in: | Sheng wu yi xue gong cheng xue za zhi 2022-01 (1), p.128 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 128 |
container_title | Sheng wu yi xue gong cheng xue za zhi |
container_volume | |
creator | Li, Huilai Yang, Zuo Wu, Xiaosong Li, Zhigang Hong, Chenggang Liu, Yong Zhu, Ling Yang, Ke |
description | Cell migration refers to the directional migration of cells towards a specific chemical concentration gradient, which plays a crucial role in embryonic development, wound healing, and tumor metastasis. Most of the current research methods have low throughput, and it is difficult to comprehensively consider the effect of different concentration gradient conditions on cell migration behavior. In response to the above problems, this paper first designs a four-channel microfluidic chip, which is characterized as follows: the concentration gradient is established and maintained in the main channel of cell migration by means of laminar flow and diffusion mechanism; four groups of cells can be observed simultaneously under a single microscope field of view Migration phenomenon; a cell isolation strip with a width of 20 μm is integrated, which can calibrate the initial position of the cells and ensure the accuracy of the experimental results. Subsequently, the simulation analysis of the microfluidic chip was complete |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2648606515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2648606515</sourcerecordid><originalsourceid>FETCH-proquest_journals_26486065153</originalsourceid><addsrcrecordid>eNqNjssKwjAURLNQsGj_IeDWQGIf6NoHfoDgssQ0aa-kSczj_40orl0NZ84sZoYKRikjTcOaBSpDgHtGRuuK7gt0O8oAg9ngAFPSPII1mJsec-c0iA9bhYXUGk8w-F-T1xGIGLkx8q2Et0on6EFgMYJbobniOsjym0u0Pp-uhwtx3j6TDLF72ORNVt22rXctbfO96r_VC5AWQgc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2648606515</pqid></control><display><type>article</type><title>Design, simulation and application of cell migration of multi-channel microfluidic chip</title><source>PubMed Central</source><creator>Li, Huilai ; Yang, Zuo ; Wu, Xiaosong ; Li, Zhigang ; Hong, Chenggang ; Liu, Yong ; Zhu, Ling ; Yang, Ke</creator><creatorcontrib>Li, Huilai ; Yang, Zuo ; Wu, Xiaosong ; Li, Zhigang ; Hong, Chenggang ; Liu, Yong ; Zhu, Ling ; Yang, Ke</creatorcontrib><description>Cell migration refers to the directional migration of cells towards a specific chemical concentration gradient, which plays a crucial role in embryonic development, wound healing, and tumor metastasis. Most of the current research methods have low throughput, and it is difficult to comprehensively consider the effect of different concentration gradient conditions on cell migration behavior. In response to the above problems, this paper first designs a four-channel microfluidic chip, which is characterized as follows: the concentration gradient is established and maintained in the main channel of cell migration by means of laminar flow and diffusion mechanism; four groups of cells can be observed simultaneously under a single microscope field of view Migration phenomenon; a cell isolation strip with a width of 20 μm is integrated, which can calibrate the initial position of the cells and ensure the accuracy of the experimental results. Subsequently, the simulation analysis of the microfluidic chip was complete</description><identifier>ISSN: 1001-5515</identifier><language>chi</language><publisher>Chengdu: Sichuan Society for Biomedical Engineering</publisher><subject>Advanced glycosylation end products ; Cell adhesion & migration ; Chemokines ; Complications ; Concentration gradient ; Diabetes mellitus ; Embryogenesis ; Embryonic growth stage ; Field of view ; Finite element method ; Formyl peptides ; Glycosylation ; Laminar flow ; Leukocyte migration ; Leukocytes (neutrophilic) ; Metastases ; Microchannels ; Microfluidics ; Neutrophils ; Research methods ; Simulation ; Simulation analysis ; Tumors ; Wound healing</subject><ispartof>Sheng wu yi xue gong cheng xue za zhi, 2022-01 (1), p.128</ispartof><rights>Copyright Sichuan Society for Biomedical Engineering 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785</link.rule.ids></links><search><creatorcontrib>Li, Huilai</creatorcontrib><creatorcontrib>Yang, Zuo</creatorcontrib><creatorcontrib>Wu, Xiaosong</creatorcontrib><creatorcontrib>Li, Zhigang</creatorcontrib><creatorcontrib>Hong, Chenggang</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Zhu, Ling</creatorcontrib><creatorcontrib>Yang, Ke</creatorcontrib><title>Design, simulation and application of cell migration of multi-channel microfluidic chip</title><title>Sheng wu yi xue gong cheng xue za zhi</title><description>Cell migration refers to the directional migration of cells towards a specific chemical concentration gradient, which plays a crucial role in embryonic development, wound healing, and tumor metastasis. Most of the current research methods have low throughput, and it is difficult to comprehensively consider the effect of different concentration gradient conditions on cell migration behavior. In response to the above problems, this paper first designs a four-channel microfluidic chip, which is characterized as follows: the concentration gradient is established and maintained in the main channel of cell migration by means of laminar flow and diffusion mechanism; four groups of cells can be observed simultaneously under a single microscope field of view Migration phenomenon; a cell isolation strip with a width of 20 μm is integrated, which can calibrate the initial position of the cells and ensure the accuracy of the experimental results. Subsequently, the simulation analysis of the microfluidic chip was complete</description><subject>Advanced glycosylation end products</subject><subject>Cell adhesion & migration</subject><subject>Chemokines</subject><subject>Complications</subject><subject>Concentration gradient</subject><subject>Diabetes mellitus</subject><subject>Embryogenesis</subject><subject>Embryonic growth stage</subject><subject>Field of view</subject><subject>Finite element method</subject><subject>Formyl peptides</subject><subject>Glycosylation</subject><subject>Laminar flow</subject><subject>Leukocyte migration</subject><subject>Leukocytes (neutrophilic)</subject><subject>Metastases</subject><subject>Microchannels</subject><subject>Microfluidics</subject><subject>Neutrophils</subject><subject>Research methods</subject><subject>Simulation</subject><subject>Simulation analysis</subject><subject>Tumors</subject><subject>Wound healing</subject><issn>1001-5515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNjssKwjAURLNQsGj_IeDWQGIf6NoHfoDgssQ0aa-kSczj_40orl0NZ84sZoYKRikjTcOaBSpDgHtGRuuK7gt0O8oAg9ngAFPSPII1mJsec-c0iA9bhYXUGk8w-F-T1xGIGLkx8q2Et0on6EFgMYJbobniOsjym0u0Pp-uhwtx3j6TDLF72ORNVt22rXctbfO96r_VC5AWQgc</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Li, Huilai</creator><creator>Yang, Zuo</creator><creator>Wu, Xiaosong</creator><creator>Li, Zhigang</creator><creator>Hong, Chenggang</creator><creator>Liu, Yong</creator><creator>Zhu, Ling</creator><creator>Yang, Ke</creator><general>Sichuan Society for Biomedical Engineering</general><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20220101</creationdate><title>Design, simulation and application of cell migration of multi-channel microfluidic chip</title><author>Li, Huilai ; Yang, Zuo ; Wu, Xiaosong ; Li, Zhigang ; Hong, Chenggang ; Liu, Yong ; Zhu, Ling ; Yang, Ke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26486065153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi</language><creationdate>2022</creationdate><topic>Advanced glycosylation end products</topic><topic>Cell adhesion & migration</topic><topic>Chemokines</topic><topic>Complications</topic><topic>Concentration gradient</topic><topic>Diabetes mellitus</topic><topic>Embryogenesis</topic><topic>Embryonic growth stage</topic><topic>Field of view</topic><topic>Finite element method</topic><topic>Formyl peptides</topic><topic>Glycosylation</topic><topic>Laminar flow</topic><topic>Leukocyte migration</topic><topic>Leukocytes (neutrophilic)</topic><topic>Metastases</topic><topic>Microchannels</topic><topic>Microfluidics</topic><topic>Neutrophils</topic><topic>Research methods</topic><topic>Simulation</topic><topic>Simulation analysis</topic><topic>Tumors</topic><topic>Wound healing</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Huilai</creatorcontrib><creatorcontrib>Yang, Zuo</creatorcontrib><creatorcontrib>Wu, Xiaosong</creatorcontrib><creatorcontrib>Li, Zhigang</creatorcontrib><creatorcontrib>Hong, Chenggang</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Zhu, Ling</creatorcontrib><creatorcontrib>Yang, Ke</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Sheng wu yi xue gong cheng xue za zhi</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Huilai</au><au>Yang, Zuo</au><au>Wu, Xiaosong</au><au>Li, Zhigang</au><au>Hong, Chenggang</au><au>Liu, Yong</au><au>Zhu, Ling</au><au>Yang, Ke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design, simulation and application of cell migration of multi-channel microfluidic chip</atitle><jtitle>Sheng wu yi xue gong cheng xue za zhi</jtitle><date>2022-01-01</date><risdate>2022</risdate><issue>1</issue><spage>128</spage><pages>128-</pages><issn>1001-5515</issn><abstract>Cell migration refers to the directional migration of cells towards a specific chemical concentration gradient, which plays a crucial role in embryonic development, wound healing, and tumor metastasis. Most of the current research methods have low throughput, and it is difficult to comprehensively consider the effect of different concentration gradient conditions on cell migration behavior. In response to the above problems, this paper first designs a four-channel microfluidic chip, which is characterized as follows: the concentration gradient is established and maintained in the main channel of cell migration by means of laminar flow and diffusion mechanism; four groups of cells can be observed simultaneously under a single microscope field of view Migration phenomenon; a cell isolation strip with a width of 20 μm is integrated, which can calibrate the initial position of the cells and ensure the accuracy of the experimental results. Subsequently, the simulation analysis of the microfluidic chip was complete</abstract><cop>Chengdu</cop><pub>Sichuan Society for Biomedical Engineering</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1001-5515 |
ispartof | Sheng wu yi xue gong cheng xue za zhi, 2022-01 (1), p.128 |
issn | 1001-5515 |
language | chi |
recordid | cdi_proquest_journals_2648606515 |
source | PubMed Central |
subjects | Advanced glycosylation end products Cell adhesion & migration Chemokines Complications Concentration gradient Diabetes mellitus Embryogenesis Embryonic growth stage Field of view Finite element method Formyl peptides Glycosylation Laminar flow Leukocyte migration Leukocytes (neutrophilic) Metastases Microchannels Microfluidics Neutrophils Research methods Simulation Simulation analysis Tumors Wound healing |
title | Design, simulation and application of cell migration of multi-channel microfluidic chip |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T08%3A51%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design,%20simulation%20and%20application%20of%20cell%20migration%20of%20multi-channel%20microfluidic%20chip&rft.jtitle=Sheng%20wu%20yi%20xue%20gong%20cheng%20xue%20za%20zhi&rft.au=Li,%20Huilai&rft.date=2022-01-01&rft.issue=1&rft.spage=128&rft.pages=128-&rft.issn=1001-5515&rft_id=info:doi/&rft_dat=%3Cproquest%3E2648606515%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2648606515&rft_id=info:pmid/&rfr_iscdi=true |