Design, simulation and application of cell migration of multi-channel microfluidic chip

Cell migration refers to the directional migration of cells towards a specific chemical concentration gradient, which plays a crucial role in embryonic development, wound healing, and tumor metastasis. Most of the current research methods have low throughput, and it is difficult to comprehensively c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sheng wu yi xue gong cheng xue za zhi 2022-01 (1), p.128
Hauptverfasser: Li, Huilai, Yang, Zuo, Wu, Xiaosong, Li, Zhigang, Hong, Chenggang, Liu, Yong, Zhu, Ling, Yang, Ke
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 128
container_title Sheng wu yi xue gong cheng xue za zhi
container_volume
creator Li, Huilai
Yang, Zuo
Wu, Xiaosong
Li, Zhigang
Hong, Chenggang
Liu, Yong
Zhu, Ling
Yang, Ke
description Cell migration refers to the directional migration of cells towards a specific chemical concentration gradient, which plays a crucial role in embryonic development, wound healing, and tumor metastasis. Most of the current research methods have low throughput, and it is difficult to comprehensively consider the effect of different concentration gradient conditions on cell migration behavior. In response to the above problems, this paper first designs a four-channel microfluidic chip, which is characterized as follows: the concentration gradient is established and maintained in the main channel of cell migration by means of laminar flow and diffusion mechanism; four groups of cells can be observed simultaneously under a single microscope field of view Migration phenomenon; a cell isolation strip with a width of 20 μm is integrated, which can calibrate the initial position of the cells and ensure the accuracy of the experimental results. Subsequently, the simulation analysis of the microfluidic chip was complete
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2648606515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2648606515</sourcerecordid><originalsourceid>FETCH-proquest_journals_26486065153</originalsourceid><addsrcrecordid>eNqNjssKwjAURLNQsGj_IeDWQGIf6NoHfoDgssQ0aa-kSczj_40orl0NZ84sZoYKRikjTcOaBSpDgHtGRuuK7gt0O8oAg9ngAFPSPII1mJsec-c0iA9bhYXUGk8w-F-T1xGIGLkx8q2Et0on6EFgMYJbobniOsjym0u0Pp-uhwtx3j6TDLF72ORNVt22rXctbfO96r_VC5AWQgc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2648606515</pqid></control><display><type>article</type><title>Design, simulation and application of cell migration of multi-channel microfluidic chip</title><source>PubMed Central</source><creator>Li, Huilai ; Yang, Zuo ; Wu, Xiaosong ; Li, Zhigang ; Hong, Chenggang ; Liu, Yong ; Zhu, Ling ; Yang, Ke</creator><creatorcontrib>Li, Huilai ; Yang, Zuo ; Wu, Xiaosong ; Li, Zhigang ; Hong, Chenggang ; Liu, Yong ; Zhu, Ling ; Yang, Ke</creatorcontrib><description>Cell migration refers to the directional migration of cells towards a specific chemical concentration gradient, which plays a crucial role in embryonic development, wound healing, and tumor metastasis. Most of the current research methods have low throughput, and it is difficult to comprehensively consider the effect of different concentration gradient conditions on cell migration behavior. In response to the above problems, this paper first designs a four-channel microfluidic chip, which is characterized as follows: the concentration gradient is established and maintained in the main channel of cell migration by means of laminar flow and diffusion mechanism; four groups of cells can be observed simultaneously under a single microscope field of view Migration phenomenon; a cell isolation strip with a width of 20 μm is integrated, which can calibrate the initial position of the cells and ensure the accuracy of the experimental results. Subsequently, the simulation analysis of the microfluidic chip was complete</description><identifier>ISSN: 1001-5515</identifier><language>chi</language><publisher>Chengdu: Sichuan Society for Biomedical Engineering</publisher><subject>Advanced glycosylation end products ; Cell adhesion &amp; migration ; Chemokines ; Complications ; Concentration gradient ; Diabetes mellitus ; Embryogenesis ; Embryonic growth stage ; Field of view ; Finite element method ; Formyl peptides ; Glycosylation ; Laminar flow ; Leukocyte migration ; Leukocytes (neutrophilic) ; Metastases ; Microchannels ; Microfluidics ; Neutrophils ; Research methods ; Simulation ; Simulation analysis ; Tumors ; Wound healing</subject><ispartof>Sheng wu yi xue gong cheng xue za zhi, 2022-01 (1), p.128</ispartof><rights>Copyright Sichuan Society for Biomedical Engineering 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785</link.rule.ids></links><search><creatorcontrib>Li, Huilai</creatorcontrib><creatorcontrib>Yang, Zuo</creatorcontrib><creatorcontrib>Wu, Xiaosong</creatorcontrib><creatorcontrib>Li, Zhigang</creatorcontrib><creatorcontrib>Hong, Chenggang</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Zhu, Ling</creatorcontrib><creatorcontrib>Yang, Ke</creatorcontrib><title>Design, simulation and application of cell migration of multi-channel microfluidic chip</title><title>Sheng wu yi xue gong cheng xue za zhi</title><description>Cell migration refers to the directional migration of cells towards a specific chemical concentration gradient, which plays a crucial role in embryonic development, wound healing, and tumor metastasis. Most of the current research methods have low throughput, and it is difficult to comprehensively consider the effect of different concentration gradient conditions on cell migration behavior. In response to the above problems, this paper first designs a four-channel microfluidic chip, which is characterized as follows: the concentration gradient is established and maintained in the main channel of cell migration by means of laminar flow and diffusion mechanism; four groups of cells can be observed simultaneously under a single microscope field of view Migration phenomenon; a cell isolation strip with a width of 20 μm is integrated, which can calibrate the initial position of the cells and ensure the accuracy of the experimental results. Subsequently, the simulation analysis of the microfluidic chip was complete</description><subject>Advanced glycosylation end products</subject><subject>Cell adhesion &amp; migration</subject><subject>Chemokines</subject><subject>Complications</subject><subject>Concentration gradient</subject><subject>Diabetes mellitus</subject><subject>Embryogenesis</subject><subject>Embryonic growth stage</subject><subject>Field of view</subject><subject>Finite element method</subject><subject>Formyl peptides</subject><subject>Glycosylation</subject><subject>Laminar flow</subject><subject>Leukocyte migration</subject><subject>Leukocytes (neutrophilic)</subject><subject>Metastases</subject><subject>Microchannels</subject><subject>Microfluidics</subject><subject>Neutrophils</subject><subject>Research methods</subject><subject>Simulation</subject><subject>Simulation analysis</subject><subject>Tumors</subject><subject>Wound healing</subject><issn>1001-5515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNjssKwjAURLNQsGj_IeDWQGIf6NoHfoDgssQ0aa-kSczj_40orl0NZ84sZoYKRikjTcOaBSpDgHtGRuuK7gt0O8oAg9ngAFPSPII1mJsec-c0iA9bhYXUGk8w-F-T1xGIGLkx8q2Et0on6EFgMYJbobniOsjym0u0Pp-uhwtx3j6TDLF72ORNVt22rXctbfO96r_VC5AWQgc</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Li, Huilai</creator><creator>Yang, Zuo</creator><creator>Wu, Xiaosong</creator><creator>Li, Zhigang</creator><creator>Hong, Chenggang</creator><creator>Liu, Yong</creator><creator>Zhu, Ling</creator><creator>Yang, Ke</creator><general>Sichuan Society for Biomedical Engineering</general><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20220101</creationdate><title>Design, simulation and application of cell migration of multi-channel microfluidic chip</title><author>Li, Huilai ; Yang, Zuo ; Wu, Xiaosong ; Li, Zhigang ; Hong, Chenggang ; Liu, Yong ; Zhu, Ling ; Yang, Ke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26486065153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi</language><creationdate>2022</creationdate><topic>Advanced glycosylation end products</topic><topic>Cell adhesion &amp; migration</topic><topic>Chemokines</topic><topic>Complications</topic><topic>Concentration gradient</topic><topic>Diabetes mellitus</topic><topic>Embryogenesis</topic><topic>Embryonic growth stage</topic><topic>Field of view</topic><topic>Finite element method</topic><topic>Formyl peptides</topic><topic>Glycosylation</topic><topic>Laminar flow</topic><topic>Leukocyte migration</topic><topic>Leukocytes (neutrophilic)</topic><topic>Metastases</topic><topic>Microchannels</topic><topic>Microfluidics</topic><topic>Neutrophils</topic><topic>Research methods</topic><topic>Simulation</topic><topic>Simulation analysis</topic><topic>Tumors</topic><topic>Wound healing</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Huilai</creatorcontrib><creatorcontrib>Yang, Zuo</creatorcontrib><creatorcontrib>Wu, Xiaosong</creatorcontrib><creatorcontrib>Li, Zhigang</creatorcontrib><creatorcontrib>Hong, Chenggang</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Zhu, Ling</creatorcontrib><creatorcontrib>Yang, Ke</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Sheng wu yi xue gong cheng xue za zhi</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Huilai</au><au>Yang, Zuo</au><au>Wu, Xiaosong</au><au>Li, Zhigang</au><au>Hong, Chenggang</au><au>Liu, Yong</au><au>Zhu, Ling</au><au>Yang, Ke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design, simulation and application of cell migration of multi-channel microfluidic chip</atitle><jtitle>Sheng wu yi xue gong cheng xue za zhi</jtitle><date>2022-01-01</date><risdate>2022</risdate><issue>1</issue><spage>128</spage><pages>128-</pages><issn>1001-5515</issn><abstract>Cell migration refers to the directional migration of cells towards a specific chemical concentration gradient, which plays a crucial role in embryonic development, wound healing, and tumor metastasis. Most of the current research methods have low throughput, and it is difficult to comprehensively consider the effect of different concentration gradient conditions on cell migration behavior. In response to the above problems, this paper first designs a four-channel microfluidic chip, which is characterized as follows: the concentration gradient is established and maintained in the main channel of cell migration by means of laminar flow and diffusion mechanism; four groups of cells can be observed simultaneously under a single microscope field of view Migration phenomenon; a cell isolation strip with a width of 20 μm is integrated, which can calibrate the initial position of the cells and ensure the accuracy of the experimental results. Subsequently, the simulation analysis of the microfluidic chip was complete</abstract><cop>Chengdu</cop><pub>Sichuan Society for Biomedical Engineering</pub></addata></record>
fulltext fulltext
identifier ISSN: 1001-5515
ispartof Sheng wu yi xue gong cheng xue za zhi, 2022-01 (1), p.128
issn 1001-5515
language chi
recordid cdi_proquest_journals_2648606515
source PubMed Central
subjects Advanced glycosylation end products
Cell adhesion & migration
Chemokines
Complications
Concentration gradient
Diabetes mellitus
Embryogenesis
Embryonic growth stage
Field of view
Finite element method
Formyl peptides
Glycosylation
Laminar flow
Leukocyte migration
Leukocytes (neutrophilic)
Metastases
Microchannels
Microfluidics
Neutrophils
Research methods
Simulation
Simulation analysis
Tumors
Wound healing
title Design, simulation and application of cell migration of multi-channel microfluidic chip
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T08%3A51%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design,%20simulation%20and%20application%20of%20cell%20migration%20of%20multi-channel%20microfluidic%20chip&rft.jtitle=Sheng%20wu%20yi%20xue%20gong%20cheng%20xue%20za%20zhi&rft.au=Li,%20Huilai&rft.date=2022-01-01&rft.issue=1&rft.spage=128&rft.pages=128-&rft.issn=1001-5515&rft_id=info:doi/&rft_dat=%3Cproquest%3E2648606515%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2648606515&rft_id=info:pmid/&rfr_iscdi=true