Personalized landmark adaptive visualization method for pedestrian navigation maps: Considering user familiarity

Landmark‐based pedestrian navigation can assist pedestrians in navigating successfully. Previous studies have investigated the factors affecting the cognitive efficiency of landmark visualization in terms of both the visual salience of landmarks and the personal characteristics of users. However, em...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions in GIS 2022-04, Vol.26 (2), p.669-690
Hauptverfasser: Zhu, Litao, Shen, Jie, Zhou, Jingyi, Stachoň, Zdeněk, Hong, Shuai, Wang, Xing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 690
container_issue 2
container_start_page 669
container_title Transactions in GIS
container_volume 26
creator Zhu, Litao
Shen, Jie
Zhou, Jingyi
Stachoň, Zdeněk
Hong, Shuai
Wang, Xing
description Landmark‐based pedestrian navigation can assist pedestrians in navigating successfully. Previous studies have investigated the factors affecting the cognitive efficiency of landmark visualization in terms of both the visual salience of landmarks and the personal characteristics of users. However, empirical studies and applications that consider the influence of spatial familiarity on landmark representation are limited. In this article, we propose a personalized landmark adaptive visualization method for pedestrian navigation maps considering user familiarity. We first explore the influence of spatial familiarity on landmark salience and symbols using cognitive experiments. The results showed that unfamiliar people preferred strong visual salience landmarks and image‐based symbols, while familiar people preferred strong semantic salience landmarks and text‐based symbols. Based on these results, a mathematical model of landmark salience for selecting personalized landmarks is proposed, and association rules between landmark salience and symbols are mined. Finally, the framework of a landmark visualization method is proposed based on the rules. To verify the effectiveness of the proposed method, a prototype system is developed, and a comparative experiment is conducted with a Baidu map. Experimental results showed that the proposed method has direct practical implications for the development of pedestrian navigation systems, depending on different target users.
doi_str_mv 10.1111/tgis.12877
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2648423481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2648423481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3017-a21b2a312ed61f8206f7fefa8d607461c4caa97551dc5fef4dab86477fe62e063</originalsourceid><addsrcrecordid>eNp9kMFKAzEQQIMoWKsXvyDgTdiaZNNk602K1kJBwXoO001SU7ebNdmt1K83dXt2LjMwb4aZh9A1JSOa4q5duziirJDyBA0oFzKbCElPU50LmlFRsHN0EeOGEML5RA5Q82pC9DVU7sdoXEGttxA-MWhoWrczeOdid2hC63yNt6b98BpbH3BjtIltcFDjGnZufQSgifd46uvotAmuXuMumoAtbF3lILh2f4nOLFTRXB3zEL0_PS6nz9niZTafPiyyMidUZsDoikFOmdGC2oIRYaU1FgotiOSClrwEmMjxmOpynBpcw6oQXCZIMENEPkQ3_d4m-K8unao2vgvp0aiY4AVnOS9oom57qgw-xmCsaoJLBvaKEnUwqg5G1Z_RBNMe_naV2f9DquVs_tbP_AKoh3xB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2648423481</pqid></control><display><type>article</type><title>Personalized landmark adaptive visualization method for pedestrian navigation maps: Considering user familiarity</title><source>Wiley-Blackwell Journals</source><source>Business Source Complete (EB_SDU_P3)</source><creator>Zhu, Litao ; Shen, Jie ; Zhou, Jingyi ; Stachoň, Zdeněk ; Hong, Shuai ; Wang, Xing</creator><creatorcontrib>Zhu, Litao ; Shen, Jie ; Zhou, Jingyi ; Stachoň, Zdeněk ; Hong, Shuai ; Wang, Xing</creatorcontrib><description>Landmark‐based pedestrian navigation can assist pedestrians in navigating successfully. Previous studies have investigated the factors affecting the cognitive efficiency of landmark visualization in terms of both the visual salience of landmarks and the personal characteristics of users. However, empirical studies and applications that consider the influence of spatial familiarity on landmark representation are limited. In this article, we propose a personalized landmark adaptive visualization method for pedestrian navigation maps considering user familiarity. We first explore the influence of spatial familiarity on landmark salience and symbols using cognitive experiments. The results showed that unfamiliar people preferred strong visual salience landmarks and image‐based symbols, while familiar people preferred strong semantic salience landmarks and text‐based symbols. Based on these results, a mathematical model of landmark salience for selecting personalized landmarks is proposed, and association rules between landmark salience and symbols are mined. Finally, the framework of a landmark visualization method is proposed based on the rules. To verify the effectiveness of the proposed method, a prototype system is developed, and a comparative experiment is conducted with a Baidu map. Experimental results showed that the proposed method has direct practical implications for the development of pedestrian navigation systems, depending on different target users.</description><identifier>ISSN: 1361-1682</identifier><identifier>EISSN: 1467-9671</identifier><identifier>DOI: 10.1111/tgis.12877</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Cognitive ability ; Customization ; Familiarity ; Mathematical models ; Navigation ; Navigation systems ; Pedestrians ; Prototypes ; Salience ; Symbols ; Visual perception ; Visualization</subject><ispartof>Transactions in GIS, 2022-04, Vol.26 (2), p.669-690</ispartof><rights>2021 John Wiley &amp; Sons Ltd</rights><rights>2022 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3017-a21b2a312ed61f8206f7fefa8d607461c4caa97551dc5fef4dab86477fe62e063</citedby><cites>FETCH-LOGICAL-c3017-a21b2a312ed61f8206f7fefa8d607461c4caa97551dc5fef4dab86477fe62e063</cites><orcidid>0000-0003-4175-598X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ftgis.12877$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ftgis.12877$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27926,27927,45576,45577</link.rule.ids></links><search><creatorcontrib>Zhu, Litao</creatorcontrib><creatorcontrib>Shen, Jie</creatorcontrib><creatorcontrib>Zhou, Jingyi</creatorcontrib><creatorcontrib>Stachoň, Zdeněk</creatorcontrib><creatorcontrib>Hong, Shuai</creatorcontrib><creatorcontrib>Wang, Xing</creatorcontrib><title>Personalized landmark adaptive visualization method for pedestrian navigation maps: Considering user familiarity</title><title>Transactions in GIS</title><description>Landmark‐based pedestrian navigation can assist pedestrians in navigating successfully. Previous studies have investigated the factors affecting the cognitive efficiency of landmark visualization in terms of both the visual salience of landmarks and the personal characteristics of users. However, empirical studies and applications that consider the influence of spatial familiarity on landmark representation are limited. In this article, we propose a personalized landmark adaptive visualization method for pedestrian navigation maps considering user familiarity. We first explore the influence of spatial familiarity on landmark salience and symbols using cognitive experiments. The results showed that unfamiliar people preferred strong visual salience landmarks and image‐based symbols, while familiar people preferred strong semantic salience landmarks and text‐based symbols. Based on these results, a mathematical model of landmark salience for selecting personalized landmarks is proposed, and association rules between landmark salience and symbols are mined. Finally, the framework of a landmark visualization method is proposed based on the rules. To verify the effectiveness of the proposed method, a prototype system is developed, and a comparative experiment is conducted with a Baidu map. Experimental results showed that the proposed method has direct practical implications for the development of pedestrian navigation systems, depending on different target users.</description><subject>Cognitive ability</subject><subject>Customization</subject><subject>Familiarity</subject><subject>Mathematical models</subject><subject>Navigation</subject><subject>Navigation systems</subject><subject>Pedestrians</subject><subject>Prototypes</subject><subject>Salience</subject><subject>Symbols</subject><subject>Visual perception</subject><subject>Visualization</subject><issn>1361-1682</issn><issn>1467-9671</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQQIMoWKsXvyDgTdiaZNNk602K1kJBwXoO001SU7ebNdmt1K83dXt2LjMwb4aZh9A1JSOa4q5duziirJDyBA0oFzKbCElPU50LmlFRsHN0EeOGEML5RA5Q82pC9DVU7sdoXEGttxA-MWhoWrczeOdid2hC63yNt6b98BpbH3BjtIltcFDjGnZufQSgifd46uvotAmuXuMumoAtbF3lILh2f4nOLFTRXB3zEL0_PS6nz9niZTafPiyyMidUZsDoikFOmdGC2oIRYaU1FgotiOSClrwEmMjxmOpynBpcw6oQXCZIMENEPkQ3_d4m-K8unao2vgvp0aiY4AVnOS9oom57qgw-xmCsaoJLBvaKEnUwqg5G1Z_RBNMe_naV2f9DquVs_tbP_AKoh3xB</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Zhu, Litao</creator><creator>Shen, Jie</creator><creator>Zhou, Jingyi</creator><creator>Stachoň, Zdeněk</creator><creator>Hong, Shuai</creator><creator>Wang, Xing</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4175-598X</orcidid></search><sort><creationdate>202204</creationdate><title>Personalized landmark adaptive visualization method for pedestrian navigation maps: Considering user familiarity</title><author>Zhu, Litao ; Shen, Jie ; Zhou, Jingyi ; Stachoň, Zdeněk ; Hong, Shuai ; Wang, Xing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3017-a21b2a312ed61f8206f7fefa8d607461c4caa97551dc5fef4dab86477fe62e063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cognitive ability</topic><topic>Customization</topic><topic>Familiarity</topic><topic>Mathematical models</topic><topic>Navigation</topic><topic>Navigation systems</topic><topic>Pedestrians</topic><topic>Prototypes</topic><topic>Salience</topic><topic>Symbols</topic><topic>Visual perception</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Litao</creatorcontrib><creatorcontrib>Shen, Jie</creatorcontrib><creatorcontrib>Zhou, Jingyi</creatorcontrib><creatorcontrib>Stachoň, Zdeněk</creatorcontrib><creatorcontrib>Hong, Shuai</creatorcontrib><creatorcontrib>Wang, Xing</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Transactions in GIS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Litao</au><au>Shen, Jie</au><au>Zhou, Jingyi</au><au>Stachoň, Zdeněk</au><au>Hong, Shuai</au><au>Wang, Xing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Personalized landmark adaptive visualization method for pedestrian navigation maps: Considering user familiarity</atitle><jtitle>Transactions in GIS</jtitle><date>2022-04</date><risdate>2022</risdate><volume>26</volume><issue>2</issue><spage>669</spage><epage>690</epage><pages>669-690</pages><issn>1361-1682</issn><eissn>1467-9671</eissn><abstract>Landmark‐based pedestrian navigation can assist pedestrians in navigating successfully. Previous studies have investigated the factors affecting the cognitive efficiency of landmark visualization in terms of both the visual salience of landmarks and the personal characteristics of users. However, empirical studies and applications that consider the influence of spatial familiarity on landmark representation are limited. In this article, we propose a personalized landmark adaptive visualization method for pedestrian navigation maps considering user familiarity. We first explore the influence of spatial familiarity on landmark salience and symbols using cognitive experiments. The results showed that unfamiliar people preferred strong visual salience landmarks and image‐based symbols, while familiar people preferred strong semantic salience landmarks and text‐based symbols. Based on these results, a mathematical model of landmark salience for selecting personalized landmarks is proposed, and association rules between landmark salience and symbols are mined. Finally, the framework of a landmark visualization method is proposed based on the rules. To verify the effectiveness of the proposed method, a prototype system is developed, and a comparative experiment is conducted with a Baidu map. Experimental results showed that the proposed method has direct practical implications for the development of pedestrian navigation systems, depending on different target users.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/tgis.12877</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-4175-598X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1361-1682
ispartof Transactions in GIS, 2022-04, Vol.26 (2), p.669-690
issn 1361-1682
1467-9671
language eng
recordid cdi_proquest_journals_2648423481
source Wiley-Blackwell Journals; Business Source Complete (EB_SDU_P3)
subjects Cognitive ability
Customization
Familiarity
Mathematical models
Navigation
Navigation systems
Pedestrians
Prototypes
Salience
Symbols
Visual perception
Visualization
title Personalized landmark adaptive visualization method for pedestrian navigation maps: Considering user familiarity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T21%3A46%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Personalized%20landmark%20adaptive%20visualization%20method%20for%20pedestrian%20navigation%20maps:%20Considering%20user%20familiarity&rft.jtitle=Transactions%20in%20GIS&rft.au=Zhu,%20Litao&rft.date=2022-04&rft.volume=26&rft.issue=2&rft.spage=669&rft.epage=690&rft.pages=669-690&rft.issn=1361-1682&rft.eissn=1467-9671&rft_id=info:doi/10.1111/tgis.12877&rft_dat=%3Cproquest_cross%3E2648423481%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2648423481&rft_id=info:pmid/&rfr_iscdi=true