Personalized landmark adaptive visualization method for pedestrian navigation maps: Considering user familiarity
Landmark‐based pedestrian navigation can assist pedestrians in navigating successfully. Previous studies have investigated the factors affecting the cognitive efficiency of landmark visualization in terms of both the visual salience of landmarks and the personal characteristics of users. However, em...
Gespeichert in:
Veröffentlicht in: | Transactions in GIS 2022-04, Vol.26 (2), p.669-690 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 690 |
---|---|
container_issue | 2 |
container_start_page | 669 |
container_title | Transactions in GIS |
container_volume | 26 |
creator | Zhu, Litao Shen, Jie Zhou, Jingyi Stachoň, Zdeněk Hong, Shuai Wang, Xing |
description | Landmark‐based pedestrian navigation can assist pedestrians in navigating successfully. Previous studies have investigated the factors affecting the cognitive efficiency of landmark visualization in terms of both the visual salience of landmarks and the personal characteristics of users. However, empirical studies and applications that consider the influence of spatial familiarity on landmark representation are limited. In this article, we propose a personalized landmark adaptive visualization method for pedestrian navigation maps considering user familiarity. We first explore the influence of spatial familiarity on landmark salience and symbols using cognitive experiments. The results showed that unfamiliar people preferred strong visual salience landmarks and image‐based symbols, while familiar people preferred strong semantic salience landmarks and text‐based symbols. Based on these results, a mathematical model of landmark salience for selecting personalized landmarks is proposed, and association rules between landmark salience and symbols are mined. Finally, the framework of a landmark visualization method is proposed based on the rules. To verify the effectiveness of the proposed method, a prototype system is developed, and a comparative experiment is conducted with a Baidu map. Experimental results showed that the proposed method has direct practical implications for the development of pedestrian navigation systems, depending on different target users. |
doi_str_mv | 10.1111/tgis.12877 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2648423481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2648423481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3017-a21b2a312ed61f8206f7fefa8d607461c4caa97551dc5fef4dab86477fe62e063</originalsourceid><addsrcrecordid>eNp9kMFKAzEQQIMoWKsXvyDgTdiaZNNk602K1kJBwXoO001SU7ebNdmt1K83dXt2LjMwb4aZh9A1JSOa4q5duziirJDyBA0oFzKbCElPU50LmlFRsHN0EeOGEML5RA5Q82pC9DVU7sdoXEGttxA-MWhoWrczeOdid2hC63yNt6b98BpbH3BjtIltcFDjGnZufQSgifd46uvotAmuXuMumoAtbF3lILh2f4nOLFTRXB3zEL0_PS6nz9niZTafPiyyMidUZsDoikFOmdGC2oIRYaU1FgotiOSClrwEmMjxmOpynBpcw6oQXCZIMENEPkQ3_d4m-K8unao2vgvp0aiY4AVnOS9oom57qgw-xmCsaoJLBvaKEnUwqg5G1Z_RBNMe_naV2f9DquVs_tbP_AKoh3xB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2648423481</pqid></control><display><type>article</type><title>Personalized landmark adaptive visualization method for pedestrian navigation maps: Considering user familiarity</title><source>Wiley-Blackwell Journals</source><source>Business Source Complete (EB_SDU_P3)</source><creator>Zhu, Litao ; Shen, Jie ; Zhou, Jingyi ; Stachoň, Zdeněk ; Hong, Shuai ; Wang, Xing</creator><creatorcontrib>Zhu, Litao ; Shen, Jie ; Zhou, Jingyi ; Stachoň, Zdeněk ; Hong, Shuai ; Wang, Xing</creatorcontrib><description>Landmark‐based pedestrian navigation can assist pedestrians in navigating successfully. Previous studies have investigated the factors affecting the cognitive efficiency of landmark visualization in terms of both the visual salience of landmarks and the personal characteristics of users. However, empirical studies and applications that consider the influence of spatial familiarity on landmark representation are limited. In this article, we propose a personalized landmark adaptive visualization method for pedestrian navigation maps considering user familiarity. We first explore the influence of spatial familiarity on landmark salience and symbols using cognitive experiments. The results showed that unfamiliar people preferred strong visual salience landmarks and image‐based symbols, while familiar people preferred strong semantic salience landmarks and text‐based symbols. Based on these results, a mathematical model of landmark salience for selecting personalized landmarks is proposed, and association rules between landmark salience and symbols are mined. Finally, the framework of a landmark visualization method is proposed based on the rules. To verify the effectiveness of the proposed method, a prototype system is developed, and a comparative experiment is conducted with a Baidu map. Experimental results showed that the proposed method has direct practical implications for the development of pedestrian navigation systems, depending on different target users.</description><identifier>ISSN: 1361-1682</identifier><identifier>EISSN: 1467-9671</identifier><identifier>DOI: 10.1111/tgis.12877</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Cognitive ability ; Customization ; Familiarity ; Mathematical models ; Navigation ; Navigation systems ; Pedestrians ; Prototypes ; Salience ; Symbols ; Visual perception ; Visualization</subject><ispartof>Transactions in GIS, 2022-04, Vol.26 (2), p.669-690</ispartof><rights>2021 John Wiley & Sons Ltd</rights><rights>2022 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3017-a21b2a312ed61f8206f7fefa8d607461c4caa97551dc5fef4dab86477fe62e063</citedby><cites>FETCH-LOGICAL-c3017-a21b2a312ed61f8206f7fefa8d607461c4caa97551dc5fef4dab86477fe62e063</cites><orcidid>0000-0003-4175-598X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ftgis.12877$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ftgis.12877$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27926,27927,45576,45577</link.rule.ids></links><search><creatorcontrib>Zhu, Litao</creatorcontrib><creatorcontrib>Shen, Jie</creatorcontrib><creatorcontrib>Zhou, Jingyi</creatorcontrib><creatorcontrib>Stachoň, Zdeněk</creatorcontrib><creatorcontrib>Hong, Shuai</creatorcontrib><creatorcontrib>Wang, Xing</creatorcontrib><title>Personalized landmark adaptive visualization method for pedestrian navigation maps: Considering user familiarity</title><title>Transactions in GIS</title><description>Landmark‐based pedestrian navigation can assist pedestrians in navigating successfully. Previous studies have investigated the factors affecting the cognitive efficiency of landmark visualization in terms of both the visual salience of landmarks and the personal characteristics of users. However, empirical studies and applications that consider the influence of spatial familiarity on landmark representation are limited. In this article, we propose a personalized landmark adaptive visualization method for pedestrian navigation maps considering user familiarity. We first explore the influence of spatial familiarity on landmark salience and symbols using cognitive experiments. The results showed that unfamiliar people preferred strong visual salience landmarks and image‐based symbols, while familiar people preferred strong semantic salience landmarks and text‐based symbols. Based on these results, a mathematical model of landmark salience for selecting personalized landmarks is proposed, and association rules between landmark salience and symbols are mined. Finally, the framework of a landmark visualization method is proposed based on the rules. To verify the effectiveness of the proposed method, a prototype system is developed, and a comparative experiment is conducted with a Baidu map. Experimental results showed that the proposed method has direct practical implications for the development of pedestrian navigation systems, depending on different target users.</description><subject>Cognitive ability</subject><subject>Customization</subject><subject>Familiarity</subject><subject>Mathematical models</subject><subject>Navigation</subject><subject>Navigation systems</subject><subject>Pedestrians</subject><subject>Prototypes</subject><subject>Salience</subject><subject>Symbols</subject><subject>Visual perception</subject><subject>Visualization</subject><issn>1361-1682</issn><issn>1467-9671</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQQIMoWKsXvyDgTdiaZNNk602K1kJBwXoO001SU7ebNdmt1K83dXt2LjMwb4aZh9A1JSOa4q5duziirJDyBA0oFzKbCElPU50LmlFRsHN0EeOGEML5RA5Q82pC9DVU7sdoXEGttxA-MWhoWrczeOdid2hC63yNt6b98BpbH3BjtIltcFDjGnZufQSgifd46uvotAmuXuMumoAtbF3lILh2f4nOLFTRXB3zEL0_PS6nz9niZTafPiyyMidUZsDoikFOmdGC2oIRYaU1FgotiOSClrwEmMjxmOpynBpcw6oQXCZIMENEPkQ3_d4m-K8unao2vgvp0aiY4AVnOS9oom57qgw-xmCsaoJLBvaKEnUwqg5G1Z_RBNMe_naV2f9DquVs_tbP_AKoh3xB</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Zhu, Litao</creator><creator>Shen, Jie</creator><creator>Zhou, Jingyi</creator><creator>Stachoň, Zdeněk</creator><creator>Hong, Shuai</creator><creator>Wang, Xing</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4175-598X</orcidid></search><sort><creationdate>202204</creationdate><title>Personalized landmark adaptive visualization method for pedestrian navigation maps: Considering user familiarity</title><author>Zhu, Litao ; Shen, Jie ; Zhou, Jingyi ; Stachoň, Zdeněk ; Hong, Shuai ; Wang, Xing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3017-a21b2a312ed61f8206f7fefa8d607461c4caa97551dc5fef4dab86477fe62e063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cognitive ability</topic><topic>Customization</topic><topic>Familiarity</topic><topic>Mathematical models</topic><topic>Navigation</topic><topic>Navigation systems</topic><topic>Pedestrians</topic><topic>Prototypes</topic><topic>Salience</topic><topic>Symbols</topic><topic>Visual perception</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Litao</creatorcontrib><creatorcontrib>Shen, Jie</creatorcontrib><creatorcontrib>Zhou, Jingyi</creatorcontrib><creatorcontrib>Stachoň, Zdeněk</creatorcontrib><creatorcontrib>Hong, Shuai</creatorcontrib><creatorcontrib>Wang, Xing</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Transactions in GIS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Litao</au><au>Shen, Jie</au><au>Zhou, Jingyi</au><au>Stachoň, Zdeněk</au><au>Hong, Shuai</au><au>Wang, Xing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Personalized landmark adaptive visualization method for pedestrian navigation maps: Considering user familiarity</atitle><jtitle>Transactions in GIS</jtitle><date>2022-04</date><risdate>2022</risdate><volume>26</volume><issue>2</issue><spage>669</spage><epage>690</epage><pages>669-690</pages><issn>1361-1682</issn><eissn>1467-9671</eissn><abstract>Landmark‐based pedestrian navigation can assist pedestrians in navigating successfully. Previous studies have investigated the factors affecting the cognitive efficiency of landmark visualization in terms of both the visual salience of landmarks and the personal characteristics of users. However, empirical studies and applications that consider the influence of spatial familiarity on landmark representation are limited. In this article, we propose a personalized landmark adaptive visualization method for pedestrian navigation maps considering user familiarity. We first explore the influence of spatial familiarity on landmark salience and symbols using cognitive experiments. The results showed that unfamiliar people preferred strong visual salience landmarks and image‐based symbols, while familiar people preferred strong semantic salience landmarks and text‐based symbols. Based on these results, a mathematical model of landmark salience for selecting personalized landmarks is proposed, and association rules between landmark salience and symbols are mined. Finally, the framework of a landmark visualization method is proposed based on the rules. To verify the effectiveness of the proposed method, a prototype system is developed, and a comparative experiment is conducted with a Baidu map. Experimental results showed that the proposed method has direct practical implications for the development of pedestrian navigation systems, depending on different target users.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/tgis.12877</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-4175-598X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1361-1682 |
ispartof | Transactions in GIS, 2022-04, Vol.26 (2), p.669-690 |
issn | 1361-1682 1467-9671 |
language | eng |
recordid | cdi_proquest_journals_2648423481 |
source | Wiley-Blackwell Journals; Business Source Complete (EB_SDU_P3) |
subjects | Cognitive ability Customization Familiarity Mathematical models Navigation Navigation systems Pedestrians Prototypes Salience Symbols Visual perception Visualization |
title | Personalized landmark adaptive visualization method for pedestrian navigation maps: Considering user familiarity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T21%3A46%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Personalized%20landmark%20adaptive%20visualization%20method%20for%20pedestrian%20navigation%20maps:%20Considering%20user%20familiarity&rft.jtitle=Transactions%20in%20GIS&rft.au=Zhu,%20Litao&rft.date=2022-04&rft.volume=26&rft.issue=2&rft.spage=669&rft.epage=690&rft.pages=669-690&rft.issn=1361-1682&rft.eissn=1467-9671&rft_id=info:doi/10.1111/tgis.12877&rft_dat=%3Cproquest_cross%3E2648423481%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2648423481&rft_id=info:pmid/&rfr_iscdi=true |