Where to find lossless metals?
Hypothetical metals having optical absorption losses as low as those of the transparent insulators, if found, could revolutionize optoelectronics. We perform the first high-throughput search for lossless metals among all known inorganic materials in the databases of over 100,000 entries. The 381 can...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-04 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Hu, Xiaolei Wu, Zhengran Li, Zhilin Xu, Qiunan Chen, Kun Jin, Kui Weng, Hongming Lu, Ling |
description | Hypothetical metals having optical absorption losses as low as those of the transparent insulators, if found, could revolutionize optoelectronics. We perform the first high-throughput search for lossless metals among all known inorganic materials in the databases of over 100,000 entries. The 381 candidates are identified -- having well-isolated partially-filled bands -- and are analyzed by defining the figures of merit and classifying their real-space conductive connectivity. The existing experimental evidence of most candidates being insulating, instead of conducting, is due to the limitation of current density functional theory in predicting narrow-band metals that are unstable against magnetism, structural distortion, or electron-electron interactions. We propose future research directions including conductive oxides, intercalating layered materials, and compressing these false-metal candidates under high pressures into eventual lossless metals. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2648328328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2648328328</sourcerecordid><originalsourceid>FETCH-proquest_journals_26483283283</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQC89ILUpVKMlXSMvMS1HIyS8uzkktLlbITS1JzCm252FgTQPSqbxQmptB2c01xNlDt6Aov7A0tbgkPiu_tCgPKBVvZGZiYWwERsSpAgB-lyw7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2648328328</pqid></control><display><type>article</type><title>Where to find lossless metals?</title><source>Free E- Journals</source><creator>Hu, Xiaolei ; Wu, Zhengran ; Li, Zhilin ; Xu, Qiunan ; Chen, Kun ; Jin, Kui ; Weng, Hongming ; Lu, Ling</creator><creatorcontrib>Hu, Xiaolei ; Wu, Zhengran ; Li, Zhilin ; Xu, Qiunan ; Chen, Kun ; Jin, Kui ; Weng, Hongming ; Lu, Ling</creatorcontrib><description>Hypothetical metals having optical absorption losses as low as those of the transparent insulators, if found, could revolutionize optoelectronics. We perform the first high-throughput search for lossless metals among all known inorganic materials in the databases of over 100,000 entries. The 381 candidates are identified -- having well-isolated partially-filled bands -- and are analyzed by defining the figures of merit and classifying their real-space conductive connectivity. The existing experimental evidence of most candidates being insulating, instead of conducting, is due to the limitation of current density functional theory in predicting narrow-band metals that are unstable against magnetism, structural distortion, or electron-electron interactions. We propose future research directions including conductive oxides, intercalating layered materials, and compressing these false-metal candidates under high pressures into eventual lossless metals.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Density functional theory ; Inorganic materials ; Insulators ; Layered materials ; Metals ; Optoelectronics</subject><ispartof>arXiv.org, 2022-04</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Hu, Xiaolei</creatorcontrib><creatorcontrib>Wu, Zhengran</creatorcontrib><creatorcontrib>Li, Zhilin</creatorcontrib><creatorcontrib>Xu, Qiunan</creatorcontrib><creatorcontrib>Chen, Kun</creatorcontrib><creatorcontrib>Jin, Kui</creatorcontrib><creatorcontrib>Weng, Hongming</creatorcontrib><creatorcontrib>Lu, Ling</creatorcontrib><title>Where to find lossless metals?</title><title>arXiv.org</title><description>Hypothetical metals having optical absorption losses as low as those of the transparent insulators, if found, could revolutionize optoelectronics. We perform the first high-throughput search for lossless metals among all known inorganic materials in the databases of over 100,000 entries. The 381 candidates are identified -- having well-isolated partially-filled bands -- and are analyzed by defining the figures of merit and classifying their real-space conductive connectivity. The existing experimental evidence of most candidates being insulating, instead of conducting, is due to the limitation of current density functional theory in predicting narrow-band metals that are unstable against magnetism, structural distortion, or electron-electron interactions. We propose future research directions including conductive oxides, intercalating layered materials, and compressing these false-metal candidates under high pressures into eventual lossless metals.</description><subject>Density functional theory</subject><subject>Inorganic materials</subject><subject>Insulators</subject><subject>Layered materials</subject><subject>Metals</subject><subject>Optoelectronics</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQC89ILUpVKMlXSMvMS1HIyS8uzkktLlbITS1JzCm252FgTQPSqbxQmptB2c01xNlDt6Aov7A0tbgkPiu_tCgPKBVvZGZiYWwERsSpAgB-lyw7</recordid><startdate>20220408</startdate><enddate>20220408</enddate><creator>Hu, Xiaolei</creator><creator>Wu, Zhengran</creator><creator>Li, Zhilin</creator><creator>Xu, Qiunan</creator><creator>Chen, Kun</creator><creator>Jin, Kui</creator><creator>Weng, Hongming</creator><creator>Lu, Ling</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220408</creationdate><title>Where to find lossless metals?</title><author>Hu, Xiaolei ; Wu, Zhengran ; Li, Zhilin ; Xu, Qiunan ; Chen, Kun ; Jin, Kui ; Weng, Hongming ; Lu, Ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26483283283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Density functional theory</topic><topic>Inorganic materials</topic><topic>Insulators</topic><topic>Layered materials</topic><topic>Metals</topic><topic>Optoelectronics</topic><toplevel>online_resources</toplevel><creatorcontrib>Hu, Xiaolei</creatorcontrib><creatorcontrib>Wu, Zhengran</creatorcontrib><creatorcontrib>Li, Zhilin</creatorcontrib><creatorcontrib>Xu, Qiunan</creatorcontrib><creatorcontrib>Chen, Kun</creatorcontrib><creatorcontrib>Jin, Kui</creatorcontrib><creatorcontrib>Weng, Hongming</creatorcontrib><creatorcontrib>Lu, Ling</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Xiaolei</au><au>Wu, Zhengran</au><au>Li, Zhilin</au><au>Xu, Qiunan</au><au>Chen, Kun</au><au>Jin, Kui</au><au>Weng, Hongming</au><au>Lu, Ling</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Where to find lossless metals?</atitle><jtitle>arXiv.org</jtitle><date>2022-04-08</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Hypothetical metals having optical absorption losses as low as those of the transparent insulators, if found, could revolutionize optoelectronics. We perform the first high-throughput search for lossless metals among all known inorganic materials in the databases of over 100,000 entries. The 381 candidates are identified -- having well-isolated partially-filled bands -- and are analyzed by defining the figures of merit and classifying their real-space conductive connectivity. The existing experimental evidence of most candidates being insulating, instead of conducting, is due to the limitation of current density functional theory in predicting narrow-band metals that are unstable against magnetism, structural distortion, or electron-electron interactions. We propose future research directions including conductive oxides, intercalating layered materials, and compressing these false-metal candidates under high pressures into eventual lossless metals.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2648328328 |
source | Free E- Journals |
subjects | Density functional theory Inorganic materials Insulators Layered materials Metals Optoelectronics |
title | Where to find lossless metals? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A30%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Where%20to%20find%20lossless%20metals?&rft.jtitle=arXiv.org&rft.au=Hu,%20Xiaolei&rft.date=2022-04-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2648328328%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2648328328&rft_id=info:pmid/&rfr_iscdi=true |