Where to find lossless metals?

Hypothetical metals having optical absorption losses as low as those of the transparent insulators, if found, could revolutionize optoelectronics. We perform the first high-throughput search for lossless metals among all known inorganic materials in the databases of over 100,000 entries. The 381 can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-04
Hauptverfasser: Hu, Xiaolei, Wu, Zhengran, Li, Zhilin, Xu, Qiunan, Chen, Kun, Jin, Kui, Weng, Hongming, Lu, Ling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Hu, Xiaolei
Wu, Zhengran
Li, Zhilin
Xu, Qiunan
Chen, Kun
Jin, Kui
Weng, Hongming
Lu, Ling
description Hypothetical metals having optical absorption losses as low as those of the transparent insulators, if found, could revolutionize optoelectronics. We perform the first high-throughput search for lossless metals among all known inorganic materials in the databases of over 100,000 entries. The 381 candidates are identified -- having well-isolated partially-filled bands -- and are analyzed by defining the figures of merit and classifying their real-space conductive connectivity. The existing experimental evidence of most candidates being insulating, instead of conducting, is due to the limitation of current density functional theory in predicting narrow-band metals that are unstable against magnetism, structural distortion, or electron-electron interactions. We propose future research directions including conductive oxides, intercalating layered materials, and compressing these false-metal candidates under high pressures into eventual lossless metals.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2648328328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2648328328</sourcerecordid><originalsourceid>FETCH-proquest_journals_26483283283</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQC89ILUpVKMlXSMvMS1HIyS8uzkktLlbITS1JzCm252FgTQPSqbxQmptB2c01xNlDt6Aov7A0tbgkPiu_tCgPKBVvZGZiYWwERsSpAgB-lyw7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2648328328</pqid></control><display><type>article</type><title>Where to find lossless metals?</title><source>Free E- Journals</source><creator>Hu, Xiaolei ; Wu, Zhengran ; Li, Zhilin ; Xu, Qiunan ; Chen, Kun ; Jin, Kui ; Weng, Hongming ; Lu, Ling</creator><creatorcontrib>Hu, Xiaolei ; Wu, Zhengran ; Li, Zhilin ; Xu, Qiunan ; Chen, Kun ; Jin, Kui ; Weng, Hongming ; Lu, Ling</creatorcontrib><description>Hypothetical metals having optical absorption losses as low as those of the transparent insulators, if found, could revolutionize optoelectronics. We perform the first high-throughput search for lossless metals among all known inorganic materials in the databases of over 100,000 entries. The 381 candidates are identified -- having well-isolated partially-filled bands -- and are analyzed by defining the figures of merit and classifying their real-space conductive connectivity. The existing experimental evidence of most candidates being insulating, instead of conducting, is due to the limitation of current density functional theory in predicting narrow-band metals that are unstable against magnetism, structural distortion, or electron-electron interactions. We propose future research directions including conductive oxides, intercalating layered materials, and compressing these false-metal candidates under high pressures into eventual lossless metals.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Density functional theory ; Inorganic materials ; Insulators ; Layered materials ; Metals ; Optoelectronics</subject><ispartof>arXiv.org, 2022-04</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Hu, Xiaolei</creatorcontrib><creatorcontrib>Wu, Zhengran</creatorcontrib><creatorcontrib>Li, Zhilin</creatorcontrib><creatorcontrib>Xu, Qiunan</creatorcontrib><creatorcontrib>Chen, Kun</creatorcontrib><creatorcontrib>Jin, Kui</creatorcontrib><creatorcontrib>Weng, Hongming</creatorcontrib><creatorcontrib>Lu, Ling</creatorcontrib><title>Where to find lossless metals?</title><title>arXiv.org</title><description>Hypothetical metals having optical absorption losses as low as those of the transparent insulators, if found, could revolutionize optoelectronics. We perform the first high-throughput search for lossless metals among all known inorganic materials in the databases of over 100,000 entries. The 381 candidates are identified -- having well-isolated partially-filled bands -- and are analyzed by defining the figures of merit and classifying their real-space conductive connectivity. The existing experimental evidence of most candidates being insulating, instead of conducting, is due to the limitation of current density functional theory in predicting narrow-band metals that are unstable against magnetism, structural distortion, or electron-electron interactions. We propose future research directions including conductive oxides, intercalating layered materials, and compressing these false-metal candidates under high pressures into eventual lossless metals.</description><subject>Density functional theory</subject><subject>Inorganic materials</subject><subject>Insulators</subject><subject>Layered materials</subject><subject>Metals</subject><subject>Optoelectronics</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQC89ILUpVKMlXSMvMS1HIyS8uzkktLlbITS1JzCm252FgTQPSqbxQmptB2c01xNlDt6Aov7A0tbgkPiu_tCgPKBVvZGZiYWwERsSpAgB-lyw7</recordid><startdate>20220408</startdate><enddate>20220408</enddate><creator>Hu, Xiaolei</creator><creator>Wu, Zhengran</creator><creator>Li, Zhilin</creator><creator>Xu, Qiunan</creator><creator>Chen, Kun</creator><creator>Jin, Kui</creator><creator>Weng, Hongming</creator><creator>Lu, Ling</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220408</creationdate><title>Where to find lossless metals?</title><author>Hu, Xiaolei ; Wu, Zhengran ; Li, Zhilin ; Xu, Qiunan ; Chen, Kun ; Jin, Kui ; Weng, Hongming ; Lu, Ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26483283283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Density functional theory</topic><topic>Inorganic materials</topic><topic>Insulators</topic><topic>Layered materials</topic><topic>Metals</topic><topic>Optoelectronics</topic><toplevel>online_resources</toplevel><creatorcontrib>Hu, Xiaolei</creatorcontrib><creatorcontrib>Wu, Zhengran</creatorcontrib><creatorcontrib>Li, Zhilin</creatorcontrib><creatorcontrib>Xu, Qiunan</creatorcontrib><creatorcontrib>Chen, Kun</creatorcontrib><creatorcontrib>Jin, Kui</creatorcontrib><creatorcontrib>Weng, Hongming</creatorcontrib><creatorcontrib>Lu, Ling</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Xiaolei</au><au>Wu, Zhengran</au><au>Li, Zhilin</au><au>Xu, Qiunan</au><au>Chen, Kun</au><au>Jin, Kui</au><au>Weng, Hongming</au><au>Lu, Ling</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Where to find lossless metals?</atitle><jtitle>arXiv.org</jtitle><date>2022-04-08</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Hypothetical metals having optical absorption losses as low as those of the transparent insulators, if found, could revolutionize optoelectronics. We perform the first high-throughput search for lossless metals among all known inorganic materials in the databases of over 100,000 entries. The 381 candidates are identified -- having well-isolated partially-filled bands -- and are analyzed by defining the figures of merit and classifying their real-space conductive connectivity. The existing experimental evidence of most candidates being insulating, instead of conducting, is due to the limitation of current density functional theory in predicting narrow-band metals that are unstable against magnetism, structural distortion, or electron-electron interactions. We propose future research directions including conductive oxides, intercalating layered materials, and compressing these false-metal candidates under high pressures into eventual lossless metals.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2648328328
source Free E- Journals
subjects Density functional theory
Inorganic materials
Insulators
Layered materials
Metals
Optoelectronics
title Where to find lossless metals?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A30%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Where%20to%20find%20lossless%20metals?&rft.jtitle=arXiv.org&rft.au=Hu,%20Xiaolei&rft.date=2022-04-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2648328328%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2648328328&rft_id=info:pmid/&rfr_iscdi=true