Interface matters: Design of an efficient α-Ag2WO4/Ag3PO4 photocatalyst
Heterojunction engineering of complex metal oxides is an active area of research that addresses fundamental questions in solid-state systems with broad technological applications. In this work, α-Ag2WO4/Ag3PO4 heterojunctions with different amounts of α-Ag2WO4 (12, 24, and 36 wt%) were synthesized b...
Gespeichert in:
Veröffentlicht in: | Materials chemistry and physics 2022-03, Vol.280, p.125710, Article 125710 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 125710 |
container_title | Materials chemistry and physics |
container_volume | 280 |
creator | Trench, Aline B. Alvarez, Roman Teodoro, Vinícius da Trindade, Letícia G. Machado, Thales R. Teixeira, Mayara M. de Souza, Daniele Pinatti, Ivo M. Simões, Alexandre Z. Gobato, Yara Galvão Andrés, Juan Longo, Elson |
description | Heterojunction engineering of complex metal oxides is an active area of research that addresses fundamental questions in solid-state systems with broad technological applications. In this work, α-Ag2WO4/Ag3PO4 heterojunctions with different amounts of α-Ag2WO4 (12, 24, and 36 wt%) were synthesized by the coprecipitation method and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, UV–vis diffuse reflectance spectroscopy, and photoluminescence. The α-Ag2WO4/Ag3PO4 heterojunction containing 24% wt of α-Ag2WO4 showed the most enhanced photocatalytic activity for the degradation of Rhodamine B, being much higher than Ag3PO4 and α-Ag2WO4. Trapping experiments revealed that the holes and superoxide radical, in minor extent, were the main active species in the photocatalytic degradation. Such enhanced photocatalytic performance was explained by the surface plasmon resonance effect associated with the presence of metallic Ag at the interface and the formation of a type I heterojunction between α-Ag2WO4 and Ag3PO4 semiconductors.
[Display omitted]
•α-Ag2WO4/Ag3PO4 heterojunctions were synthesized by the co-precipitation method.•Heterojunction with 24-wt% α-Ag2WO4 degrades RhB (94.3%) in 5 min in visible light irradiation.•Surface plasmon resonance effect by Ag nanoparticles promotes improvement in charge carrier separation. |
doi_str_mv | 10.1016/j.matchemphys.2022.125710 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2648261827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0254058422000165</els_id><sourcerecordid>2648261827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-3f432195d755ea64e416b7859fa773bae5bbe05055cdbcdfe86b092c2d36a723</originalsourceid><addsrcrecordid>eNqNkE1OwzAUhC0EEqVwhyDWSf0bJ-yq8tNKlcKiEkvLcZ7bRG0SbBepx-IinIlUYcGS1ZvFzDzNh9A9wQnBJJ01yUEHs4NDvzv5hGJKE0KFJPgCTUgm85gxQi_RBFPBYywyfo1uvG8wJpIQNkHLVRvAWW0gGooG6R-jJ_D1to06G-k2AmtrU0Mbou-veL6l7wWfzbfsreBRv-tCZ3TQ-5MPt-jK6r2Hu987RZuX581iGa-L19Vivo4NxzjEzHJGSS4qKQTolAMnaSkzkVstJSs1iLIELLAQpipNZSFLS5xTQyuWaknZFD2Mtb3rPo7gg2q6o2uHj4qmPKMpyagcXPnoMq7z3oFVvasP2p0UwerMTTXqDzd15qZGbkN2MWZhWPFZg1P-vN9AVTswQVVd_Y-WH6uCe9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2648261827</pqid></control><display><type>article</type><title>Interface matters: Design of an efficient α-Ag2WO4/Ag3PO4 photocatalyst</title><source>Elsevier ScienceDirect Journals</source><creator>Trench, Aline B. ; Alvarez, Roman ; Teodoro, Vinícius ; da Trindade, Letícia G. ; Machado, Thales R. ; Teixeira, Mayara M. ; de Souza, Daniele ; Pinatti, Ivo M. ; Simões, Alexandre Z. ; Gobato, Yara Galvão ; Andrés, Juan ; Longo, Elson</creator><creatorcontrib>Trench, Aline B. ; Alvarez, Roman ; Teodoro, Vinícius ; da Trindade, Letícia G. ; Machado, Thales R. ; Teixeira, Mayara M. ; de Souza, Daniele ; Pinatti, Ivo M. ; Simões, Alexandre Z. ; Gobato, Yara Galvão ; Andrés, Juan ; Longo, Elson</creatorcontrib><description>Heterojunction engineering of complex metal oxides is an active area of research that addresses fundamental questions in solid-state systems with broad technological applications. In this work, α-Ag2WO4/Ag3PO4 heterojunctions with different amounts of α-Ag2WO4 (12, 24, and 36 wt%) were synthesized by the coprecipitation method and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, UV–vis diffuse reflectance spectroscopy, and photoluminescence. The α-Ag2WO4/Ag3PO4 heterojunction containing 24% wt of α-Ag2WO4 showed the most enhanced photocatalytic activity for the degradation of Rhodamine B, being much higher than Ag3PO4 and α-Ag2WO4. Trapping experiments revealed that the holes and superoxide radical, in minor extent, were the main active species in the photocatalytic degradation. Such enhanced photocatalytic performance was explained by the surface plasmon resonance effect associated with the presence of metallic Ag at the interface and the formation of a type I heterojunction between α-Ag2WO4 and Ag3PO4 semiconductors.
[Display omitted]
•α-Ag2WO4/Ag3PO4 heterojunctions were synthesized by the co-precipitation method.•Heterojunction with 24-wt% α-Ag2WO4 degrades RhB (94.3%) in 5 min in visible light irradiation.•Surface plasmon resonance effect by Ag nanoparticles promotes improvement in charge carrier separation.</description><identifier>ISSN: 0254-0584</identifier><identifier>EISSN: 1879-3312</identifier><identifier>DOI: 10.1016/j.matchemphys.2022.125710</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Catalytic activity ; Coordination compounds ; Electron microscopy ; Field emission microscopy ; Field emission spectroscopy ; Heterojunctions ; Metal oxides ; Microscopy ; Phosphates ; Photocatalysis ; Photocatalytic activity ; Photodegradation ; Photoelectrons ; Photoluminescence ; Rhodamine ; Silver compounds ; Spectrum analysis ; Surface plasmon resonance ; Type I heterojunction ; α-Ag2WO4/Ag3PO4</subject><ispartof>Materials chemistry and physics, 2022-03, Vol.280, p.125710, Article 125710</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier BV Mar 15, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-3f432195d755ea64e416b7859fa773bae5bbe05055cdbcdfe86b092c2d36a723</citedby><cites>FETCH-LOGICAL-c400t-3f432195d755ea64e416b7859fa773bae5bbe05055cdbcdfe86b092c2d36a723</cites><orcidid>0000-0001-9038-0024 ; 0000-0002-2938-412X ; 0000-0002-6612-1978 ; 0000-0001-8062-7791 ; 0000-0001-6785-0761 ; 0000-0002-0964-3075</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0254058422000165$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Trench, Aline B.</creatorcontrib><creatorcontrib>Alvarez, Roman</creatorcontrib><creatorcontrib>Teodoro, Vinícius</creatorcontrib><creatorcontrib>da Trindade, Letícia G.</creatorcontrib><creatorcontrib>Machado, Thales R.</creatorcontrib><creatorcontrib>Teixeira, Mayara M.</creatorcontrib><creatorcontrib>de Souza, Daniele</creatorcontrib><creatorcontrib>Pinatti, Ivo M.</creatorcontrib><creatorcontrib>Simões, Alexandre Z.</creatorcontrib><creatorcontrib>Gobato, Yara Galvão</creatorcontrib><creatorcontrib>Andrés, Juan</creatorcontrib><creatorcontrib>Longo, Elson</creatorcontrib><title>Interface matters: Design of an efficient α-Ag2WO4/Ag3PO4 photocatalyst</title><title>Materials chemistry and physics</title><description>Heterojunction engineering of complex metal oxides is an active area of research that addresses fundamental questions in solid-state systems with broad technological applications. In this work, α-Ag2WO4/Ag3PO4 heterojunctions with different amounts of α-Ag2WO4 (12, 24, and 36 wt%) were synthesized by the coprecipitation method and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, UV–vis diffuse reflectance spectroscopy, and photoluminescence. The α-Ag2WO4/Ag3PO4 heterojunction containing 24% wt of α-Ag2WO4 showed the most enhanced photocatalytic activity for the degradation of Rhodamine B, being much higher than Ag3PO4 and α-Ag2WO4. Trapping experiments revealed that the holes and superoxide radical, in minor extent, were the main active species in the photocatalytic degradation. Such enhanced photocatalytic performance was explained by the surface plasmon resonance effect associated with the presence of metallic Ag at the interface and the formation of a type I heterojunction between α-Ag2WO4 and Ag3PO4 semiconductors.
[Display omitted]
•α-Ag2WO4/Ag3PO4 heterojunctions were synthesized by the co-precipitation method.•Heterojunction with 24-wt% α-Ag2WO4 degrades RhB (94.3%) in 5 min in visible light irradiation.•Surface plasmon resonance effect by Ag nanoparticles promotes improvement in charge carrier separation.</description><subject>Catalytic activity</subject><subject>Coordination compounds</subject><subject>Electron microscopy</subject><subject>Field emission microscopy</subject><subject>Field emission spectroscopy</subject><subject>Heterojunctions</subject><subject>Metal oxides</subject><subject>Microscopy</subject><subject>Phosphates</subject><subject>Photocatalysis</subject><subject>Photocatalytic activity</subject><subject>Photodegradation</subject><subject>Photoelectrons</subject><subject>Photoluminescence</subject><subject>Rhodamine</subject><subject>Silver compounds</subject><subject>Spectrum analysis</subject><subject>Surface plasmon resonance</subject><subject>Type I heterojunction</subject><subject>α-Ag2WO4/Ag3PO4</subject><issn>0254-0584</issn><issn>1879-3312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkE1OwzAUhC0EEqVwhyDWSf0bJ-yq8tNKlcKiEkvLcZ7bRG0SbBepx-IinIlUYcGS1ZvFzDzNh9A9wQnBJJ01yUEHs4NDvzv5hGJKE0KFJPgCTUgm85gxQi_RBFPBYywyfo1uvG8wJpIQNkHLVRvAWW0gGooG6R-jJ_D1to06G-k2AmtrU0Mbou-veL6l7wWfzbfsreBRv-tCZ3TQ-5MPt-jK6r2Hu987RZuX581iGa-L19Vivo4NxzjEzHJGSS4qKQTolAMnaSkzkVstJSs1iLIELLAQpipNZSFLS5xTQyuWaknZFD2Mtb3rPo7gg2q6o2uHj4qmPKMpyagcXPnoMq7z3oFVvasP2p0UwerMTTXqDzd15qZGbkN2MWZhWPFZg1P-vN9AVTswQVVd_Y-WH6uCe9w</recordid><startdate>20220315</startdate><enddate>20220315</enddate><creator>Trench, Aline B.</creator><creator>Alvarez, Roman</creator><creator>Teodoro, Vinícius</creator><creator>da Trindade, Letícia G.</creator><creator>Machado, Thales R.</creator><creator>Teixeira, Mayara M.</creator><creator>de Souza, Daniele</creator><creator>Pinatti, Ivo M.</creator><creator>Simões, Alexandre Z.</creator><creator>Gobato, Yara Galvão</creator><creator>Andrés, Juan</creator><creator>Longo, Elson</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9038-0024</orcidid><orcidid>https://orcid.org/0000-0002-2938-412X</orcidid><orcidid>https://orcid.org/0000-0002-6612-1978</orcidid><orcidid>https://orcid.org/0000-0001-8062-7791</orcidid><orcidid>https://orcid.org/0000-0001-6785-0761</orcidid><orcidid>https://orcid.org/0000-0002-0964-3075</orcidid></search><sort><creationdate>20220315</creationdate><title>Interface matters: Design of an efficient α-Ag2WO4/Ag3PO4 photocatalyst</title><author>Trench, Aline B. ; Alvarez, Roman ; Teodoro, Vinícius ; da Trindade, Letícia G. ; Machado, Thales R. ; Teixeira, Mayara M. ; de Souza, Daniele ; Pinatti, Ivo M. ; Simões, Alexandre Z. ; Gobato, Yara Galvão ; Andrés, Juan ; Longo, Elson</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-3f432195d755ea64e416b7859fa773bae5bbe05055cdbcdfe86b092c2d36a723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Catalytic activity</topic><topic>Coordination compounds</topic><topic>Electron microscopy</topic><topic>Field emission microscopy</topic><topic>Field emission spectroscopy</topic><topic>Heterojunctions</topic><topic>Metal oxides</topic><topic>Microscopy</topic><topic>Phosphates</topic><topic>Photocatalysis</topic><topic>Photocatalytic activity</topic><topic>Photodegradation</topic><topic>Photoelectrons</topic><topic>Photoluminescence</topic><topic>Rhodamine</topic><topic>Silver compounds</topic><topic>Spectrum analysis</topic><topic>Surface plasmon resonance</topic><topic>Type I heterojunction</topic><topic>α-Ag2WO4/Ag3PO4</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trench, Aline B.</creatorcontrib><creatorcontrib>Alvarez, Roman</creatorcontrib><creatorcontrib>Teodoro, Vinícius</creatorcontrib><creatorcontrib>da Trindade, Letícia G.</creatorcontrib><creatorcontrib>Machado, Thales R.</creatorcontrib><creatorcontrib>Teixeira, Mayara M.</creatorcontrib><creatorcontrib>de Souza, Daniele</creatorcontrib><creatorcontrib>Pinatti, Ivo M.</creatorcontrib><creatorcontrib>Simões, Alexandre Z.</creatorcontrib><creatorcontrib>Gobato, Yara Galvão</creatorcontrib><creatorcontrib>Andrés, Juan</creatorcontrib><creatorcontrib>Longo, Elson</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trench, Aline B.</au><au>Alvarez, Roman</au><au>Teodoro, Vinícius</au><au>da Trindade, Letícia G.</au><au>Machado, Thales R.</au><au>Teixeira, Mayara M.</au><au>de Souza, Daniele</au><au>Pinatti, Ivo M.</au><au>Simões, Alexandre Z.</au><au>Gobato, Yara Galvão</au><au>Andrés, Juan</au><au>Longo, Elson</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interface matters: Design of an efficient α-Ag2WO4/Ag3PO4 photocatalyst</atitle><jtitle>Materials chemistry and physics</jtitle><date>2022-03-15</date><risdate>2022</risdate><volume>280</volume><spage>125710</spage><pages>125710-</pages><artnum>125710</artnum><issn>0254-0584</issn><eissn>1879-3312</eissn><abstract>Heterojunction engineering of complex metal oxides is an active area of research that addresses fundamental questions in solid-state systems with broad technological applications. In this work, α-Ag2WO4/Ag3PO4 heterojunctions with different amounts of α-Ag2WO4 (12, 24, and 36 wt%) were synthesized by the coprecipitation method and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, UV–vis diffuse reflectance spectroscopy, and photoluminescence. The α-Ag2WO4/Ag3PO4 heterojunction containing 24% wt of α-Ag2WO4 showed the most enhanced photocatalytic activity for the degradation of Rhodamine B, being much higher than Ag3PO4 and α-Ag2WO4. Trapping experiments revealed that the holes and superoxide radical, in minor extent, were the main active species in the photocatalytic degradation. Such enhanced photocatalytic performance was explained by the surface plasmon resonance effect associated with the presence of metallic Ag at the interface and the formation of a type I heterojunction between α-Ag2WO4 and Ag3PO4 semiconductors.
[Display omitted]
•α-Ag2WO4/Ag3PO4 heterojunctions were synthesized by the co-precipitation method.•Heterojunction with 24-wt% α-Ag2WO4 degrades RhB (94.3%) in 5 min in visible light irradiation.•Surface plasmon resonance effect by Ag nanoparticles promotes improvement in charge carrier separation.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.matchemphys.2022.125710</doi><orcidid>https://orcid.org/0000-0001-9038-0024</orcidid><orcidid>https://orcid.org/0000-0002-2938-412X</orcidid><orcidid>https://orcid.org/0000-0002-6612-1978</orcidid><orcidid>https://orcid.org/0000-0001-8062-7791</orcidid><orcidid>https://orcid.org/0000-0001-6785-0761</orcidid><orcidid>https://orcid.org/0000-0002-0964-3075</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0254-0584 |
ispartof | Materials chemistry and physics, 2022-03, Vol.280, p.125710, Article 125710 |
issn | 0254-0584 1879-3312 |
language | eng |
recordid | cdi_proquest_journals_2648261827 |
source | Elsevier ScienceDirect Journals |
subjects | Catalytic activity Coordination compounds Electron microscopy Field emission microscopy Field emission spectroscopy Heterojunctions Metal oxides Microscopy Phosphates Photocatalysis Photocatalytic activity Photodegradation Photoelectrons Photoluminescence Rhodamine Silver compounds Spectrum analysis Surface plasmon resonance Type I heterojunction α-Ag2WO4/Ag3PO4 |
title | Interface matters: Design of an efficient α-Ag2WO4/Ag3PO4 photocatalyst |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A02%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interface%20matters:%20Design%20of%20an%20efficient%20%CE%B1-Ag2WO4/Ag3PO4%20photocatalyst&rft.jtitle=Materials%20chemistry%20and%20physics&rft.au=Trench,%20Aline%20B.&rft.date=2022-03-15&rft.volume=280&rft.spage=125710&rft.pages=125710-&rft.artnum=125710&rft.issn=0254-0584&rft.eissn=1879-3312&rft_id=info:doi/10.1016/j.matchemphys.2022.125710&rft_dat=%3Cproquest_cross%3E2648261827%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2648261827&rft_id=info:pmid/&rft_els_id=S0254058422000165&rfr_iscdi=true |