Gorensteinness and iteration of Cox rings for Fano type varieties

We show that finitely generated Cox rings are Gorenstein. This leads to a refined characterization of varieties of Fano type: they are exactly those projective varieties with Gorenstein canonical quasicone Cox ring. We then show that for varieties of Fano type and Kawamata log terminal quasicones X...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2022-05, Vol.301 (1), p.1047-1061
1. Verfasser: Braun, Lukas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that finitely generated Cox rings are Gorenstein. This leads to a refined characterization of varieties of Fano type: they are exactly those projective varieties with Gorenstein canonical quasicone Cox ring. We then show that for varieties of Fano type and Kawamata log terminal quasicones X , iteration of Cox rings is finite with factorial master Cox ring. In particular, even if the class group has torsion, we can express such X as quotients of a factorial canonical quasicone by a solvable reductive group.
ISSN:0025-5874
1432-1823
DOI:10.1007/s00209-021-02946-w