Gorensteinness and iteration of Cox rings for Fano type varieties
We show that finitely generated Cox rings are Gorenstein. This leads to a refined characterization of varieties of Fano type: they are exactly those projective varieties with Gorenstein canonical quasicone Cox ring. We then show that for varieties of Fano type and Kawamata log terminal quasicones X...
Gespeichert in:
Veröffentlicht in: | Mathematische Zeitschrift 2022-05, Vol.301 (1), p.1047-1061 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that finitely generated Cox rings are Gorenstein. This leads to a refined characterization of varieties of Fano type: they are exactly those projective varieties with Gorenstein canonical quasicone Cox ring. We then show that for varieties of Fano type and Kawamata log terminal quasicones
X
, iteration of Cox rings is finite with factorial master Cox ring. In particular, even if the class group has torsion, we can express such
X
as quotients of a factorial canonical quasicone by a solvable reductive group. |
---|---|
ISSN: | 0025-5874 1432-1823 |
DOI: | 10.1007/s00209-021-02946-w |