Characterization of Metallic Iridium Nanoparticles Synthesized under Hydrothermal Conditions

— This paper examines processes for the preparation of metallic iridium nanoparticles under hydrothermal conditions. The reduction of aqueous potassium hexachloroiridate(IV) solutions with sodium tetrahydridoborate in acidic and alkaline media at temperatures from 130 to 180°C has been shown to take...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic materials 2022-02, Vol.58 (2), p.215-222
Hauptverfasser: Borisov, R. V., Belousov, O. V., Zhizhaev, A. M., Kirik, S. D., Mikhlin, Yu. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 222
container_issue 2
container_start_page 215
container_title Inorganic materials
container_volume 58
creator Borisov, R. V.
Belousov, O. V.
Zhizhaev, A. M.
Kirik, S. D.
Mikhlin, Yu. L.
description — This paper examines processes for the preparation of metallic iridium nanoparticles under hydrothermal conditions. The reduction of aqueous potassium hexachloroiridate(IV) solutions with sodium tetrahydridoborate in acidic and alkaline media at temperatures from 130 to 180°C has been shown to take 2–30 min and result in the formation of fine metallic iridium powder with a characteristic mosaic structure. The average size of the iridium(0) nanoparticles varies from 8 to 300 nm, depending on synthesis conditions, and the crystallite size is no greater than 10 nm. According to low-temperature nitrogen gas adsorption measurements, the specific surface area of the materials prepared in acid solutions ranges from 1 to 10 m 2 /g, and that of the materials prepared in alkaline solutions reaches 25 m 2 /g. X-ray photoelectron spectroscopy results demonstrate that the surface of the 8-nm-diameter iridium nanoparticles is covered with an oxide film. As shown by differential scanning calorimetry and thermogravimetry in an argon atmosphere, the fraction of iridium oxide compounds in the material with a specific surface area of 25 m 2 /g does not exceed 5 wt %.
doi_str_mv 10.1134/S0020168522020030
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2648148934</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2648148934</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-3b786942ba40f6861ff2b94e206fecb87beac97f4a91089f7e0bd95746d246523</originalsourceid><addsrcrecordid>eNp1kEFLxDAQhYMouK7-AG8Bz9VJmqbJUYq6C6seVm9CSdvEzdJN1qQ97P56Wyp4EE8zzHvfG3gIXRO4JSRld2sACoSLjNJhgRRO0IxwEElKcnqKZqOcjPo5uohxCwAsE3KGPoqNCqrudLBH1VnvsDf4WXeqbW2Nl8E2tt_hF-X8XoXO1q2OeH1w3UZHe9QN7l2jA14cmuCHW9ipFhfeNXaMipfozKg26qufOUfvjw9vxSJZvT4ti_tVUlPGuyStcsElo5ViYLjgxBhaSaYpcKPrSuSVVrXMDVOSgJAm11A1MssZbwY-o-kc3Uy5--C_eh27cuv74IaXJeVMECZkygYXmVx18DEGbcp9sDsVDiWBciyx_FPiwNCJiYPXferwm_w_9A3-fXQ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2648148934</pqid></control><display><type>article</type><title>Characterization of Metallic Iridium Nanoparticles Synthesized under Hydrothermal Conditions</title><source>SpringerLink Journals - AutoHoldings</source><creator>Borisov, R. V. ; Belousov, O. V. ; Zhizhaev, A. M. ; Kirik, S. D. ; Mikhlin, Yu. L.</creator><creatorcontrib>Borisov, R. V. ; Belousov, O. V. ; Zhizhaev, A. M. ; Kirik, S. D. ; Mikhlin, Yu. L.</creatorcontrib><description>— This paper examines processes for the preparation of metallic iridium nanoparticles under hydrothermal conditions. The reduction of aqueous potassium hexachloroiridate(IV) solutions with sodium tetrahydridoborate in acidic and alkaline media at temperatures from 130 to 180°C has been shown to take 2–30 min and result in the formation of fine metallic iridium powder with a characteristic mosaic structure. The average size of the iridium(0) nanoparticles varies from 8 to 300 nm, depending on synthesis conditions, and the crystallite size is no greater than 10 nm. According to low-temperature nitrogen gas adsorption measurements, the specific surface area of the materials prepared in acid solutions ranges from 1 to 10 m 2 /g, and that of the materials prepared in alkaline solutions reaches 25 m 2 /g. X-ray photoelectron spectroscopy results demonstrate that the surface of the 8-nm-diameter iridium nanoparticles is covered with an oxide film. As shown by differential scanning calorimetry and thermogravimetry in an argon atmosphere, the fraction of iridium oxide compounds in the material with a specific surface area of 25 m 2 /g does not exceed 5 wt %.</description><identifier>ISSN: 0020-1685</identifier><identifier>EISSN: 1608-3172</identifier><identifier>DOI: 10.1134/S0020168522020030</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Argon ; Chemistry ; Chemistry and Materials Science ; Crystallites ; Diameters ; Industrial Chemistry/Chemical Engineering ; Inorganic Chemistry ; Iridium ; Low temperature ; Materials Science ; Nanoparticles ; Oxide coatings ; Photoelectrons ; Specific surface ; Surface area ; Thermogravimetry</subject><ispartof>Inorganic materials, 2022-02, Vol.58 (2), p.215-222</ispartof><rights>Pleiades Publishing, Ltd. 2022. ISSN 0020-1685, Inorganic Materials, 2022, Vol. 58, No. 2, pp. 215–222. © Pleiades Publishing, Ltd., 2022. Russian Text © The Author(s), 2022, published in Neorganicheskie Materialy, 2022, Vol. 58, No. 2, pp. 225–232.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c246t-3b786942ba40f6861ff2b94e206fecb87beac97f4a91089f7e0bd95746d246523</citedby><cites>FETCH-LOGICAL-c246t-3b786942ba40f6861ff2b94e206fecb87beac97f4a91089f7e0bd95746d246523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0020168522020030$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0020168522020030$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Borisov, R. V.</creatorcontrib><creatorcontrib>Belousov, O. V.</creatorcontrib><creatorcontrib>Zhizhaev, A. M.</creatorcontrib><creatorcontrib>Kirik, S. D.</creatorcontrib><creatorcontrib>Mikhlin, Yu. L.</creatorcontrib><title>Characterization of Metallic Iridium Nanoparticles Synthesized under Hydrothermal Conditions</title><title>Inorganic materials</title><addtitle>Inorg Mater</addtitle><description>— This paper examines processes for the preparation of metallic iridium nanoparticles under hydrothermal conditions. The reduction of aqueous potassium hexachloroiridate(IV) solutions with sodium tetrahydridoborate in acidic and alkaline media at temperatures from 130 to 180°C has been shown to take 2–30 min and result in the formation of fine metallic iridium powder with a characteristic mosaic structure. The average size of the iridium(0) nanoparticles varies from 8 to 300 nm, depending on synthesis conditions, and the crystallite size is no greater than 10 nm. According to low-temperature nitrogen gas adsorption measurements, the specific surface area of the materials prepared in acid solutions ranges from 1 to 10 m 2 /g, and that of the materials prepared in alkaline solutions reaches 25 m 2 /g. X-ray photoelectron spectroscopy results demonstrate that the surface of the 8-nm-diameter iridium nanoparticles is covered with an oxide film. As shown by differential scanning calorimetry and thermogravimetry in an argon atmosphere, the fraction of iridium oxide compounds in the material with a specific surface area of 25 m 2 /g does not exceed 5 wt %.</description><subject>Argon</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Crystallites</subject><subject>Diameters</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Inorganic Chemistry</subject><subject>Iridium</subject><subject>Low temperature</subject><subject>Materials Science</subject><subject>Nanoparticles</subject><subject>Oxide coatings</subject><subject>Photoelectrons</subject><subject>Specific surface</subject><subject>Surface area</subject><subject>Thermogravimetry</subject><issn>0020-1685</issn><issn>1608-3172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLxDAQhYMouK7-AG8Bz9VJmqbJUYq6C6seVm9CSdvEzdJN1qQ97P56Wyp4EE8zzHvfG3gIXRO4JSRld2sACoSLjNJhgRRO0IxwEElKcnqKZqOcjPo5uohxCwAsE3KGPoqNCqrudLBH1VnvsDf4WXeqbW2Nl8E2tt_hF-X8XoXO1q2OeH1w3UZHe9QN7l2jA14cmuCHW9ipFhfeNXaMipfozKg26qufOUfvjw9vxSJZvT4ti_tVUlPGuyStcsElo5ViYLjgxBhaSaYpcKPrSuSVVrXMDVOSgJAm11A1MssZbwY-o-kc3Uy5--C_eh27cuv74IaXJeVMECZkygYXmVx18DEGbcp9sDsVDiWBciyx_FPiwNCJiYPXferwm_w_9A3-fXQ0</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Borisov, R. V.</creator><creator>Belousov, O. V.</creator><creator>Zhizhaev, A. M.</creator><creator>Kirik, S. D.</creator><creator>Mikhlin, Yu. L.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220201</creationdate><title>Characterization of Metallic Iridium Nanoparticles Synthesized under Hydrothermal Conditions</title><author>Borisov, R. V. ; Belousov, O. V. ; Zhizhaev, A. M. ; Kirik, S. D. ; Mikhlin, Yu. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-3b786942ba40f6861ff2b94e206fecb87beac97f4a91089f7e0bd95746d246523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Argon</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Crystallites</topic><topic>Diameters</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Inorganic Chemistry</topic><topic>Iridium</topic><topic>Low temperature</topic><topic>Materials Science</topic><topic>Nanoparticles</topic><topic>Oxide coatings</topic><topic>Photoelectrons</topic><topic>Specific surface</topic><topic>Surface area</topic><topic>Thermogravimetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borisov, R. V.</creatorcontrib><creatorcontrib>Belousov, O. V.</creatorcontrib><creatorcontrib>Zhizhaev, A. M.</creatorcontrib><creatorcontrib>Kirik, S. D.</creatorcontrib><creatorcontrib>Mikhlin, Yu. L.</creatorcontrib><collection>CrossRef</collection><jtitle>Inorganic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borisov, R. V.</au><au>Belousov, O. V.</au><au>Zhizhaev, A. M.</au><au>Kirik, S. D.</au><au>Mikhlin, Yu. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of Metallic Iridium Nanoparticles Synthesized under Hydrothermal Conditions</atitle><jtitle>Inorganic materials</jtitle><stitle>Inorg Mater</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>58</volume><issue>2</issue><spage>215</spage><epage>222</epage><pages>215-222</pages><issn>0020-1685</issn><eissn>1608-3172</eissn><abstract>— This paper examines processes for the preparation of metallic iridium nanoparticles under hydrothermal conditions. The reduction of aqueous potassium hexachloroiridate(IV) solutions with sodium tetrahydridoborate in acidic and alkaline media at temperatures from 130 to 180°C has been shown to take 2–30 min and result in the formation of fine metallic iridium powder with a characteristic mosaic structure. The average size of the iridium(0) nanoparticles varies from 8 to 300 nm, depending on synthesis conditions, and the crystallite size is no greater than 10 nm. According to low-temperature nitrogen gas adsorption measurements, the specific surface area of the materials prepared in acid solutions ranges from 1 to 10 m 2 /g, and that of the materials prepared in alkaline solutions reaches 25 m 2 /g. X-ray photoelectron spectroscopy results demonstrate that the surface of the 8-nm-diameter iridium nanoparticles is covered with an oxide film. As shown by differential scanning calorimetry and thermogravimetry in an argon atmosphere, the fraction of iridium oxide compounds in the material with a specific surface area of 25 m 2 /g does not exceed 5 wt %.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0020168522020030</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-1685
ispartof Inorganic materials, 2022-02, Vol.58 (2), p.215-222
issn 0020-1685
1608-3172
language eng
recordid cdi_proquest_journals_2648148934
source SpringerLink Journals - AutoHoldings
subjects Argon
Chemistry
Chemistry and Materials Science
Crystallites
Diameters
Industrial Chemistry/Chemical Engineering
Inorganic Chemistry
Iridium
Low temperature
Materials Science
Nanoparticles
Oxide coatings
Photoelectrons
Specific surface
Surface area
Thermogravimetry
title Characterization of Metallic Iridium Nanoparticles Synthesized under Hydrothermal Conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A42%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20Metallic%20Iridium%20Nanoparticles%20Synthesized%20under%20Hydrothermal%20Conditions&rft.jtitle=Inorganic%20materials&rft.au=Borisov,%20R.%20V.&rft.date=2022-02-01&rft.volume=58&rft.issue=2&rft.spage=215&rft.epage=222&rft.pages=215-222&rft.issn=0020-1685&rft.eissn=1608-3172&rft_id=info:doi/10.1134/S0020168522020030&rft_dat=%3Cproquest_cross%3E2648148934%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2648148934&rft_id=info:pmid/&rfr_iscdi=true