Grid-based calculation of the Lagrangian mean

Lagrangian averaging has been shown to be more effective than the Eulerian mean in separating waves from slow dynamics in two time scale flows. It also appears in many reduced models that capture the wave feedback on the slow flow. Its calculation, however, requires tracking particles in time, which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2022-06, Vol.940, Article A21
1. Verfasser: Kafiabad, Hossein A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 940
creator Kafiabad, Hossein A.
description Lagrangian averaging has been shown to be more effective than the Eulerian mean in separating waves from slow dynamics in two time scale flows. It also appears in many reduced models that capture the wave feedback on the slow flow. Its calculation, however, requires tracking particles in time, which imposes several difficulties in grid-based numerical simulations or estimation from fixed-point measurements. To circumvent these difficulties, we propose a grid-based iterative method to calculate the Lagrangian mean without tracking particles in time, which also reduces computation, memory footprint and communication between processors in parallelised numerical models. To assess the accuracy of this method several examples are examined and discussed. We also explore an application of this method in the context of shallow-water equations by quantifying the validity of wave-averaged geostrophic balance – a modified form of geostrophic balance accounting for the effect of strong waves on slow dynamics.
doi_str_mv 10.1017/jfm.2022.233
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2648016116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2022_233</cupid><sourcerecordid>2648016116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-2f2b7b7376ebba7533f1c1d3503c307c95b52d14c65cf9c9f2495ef37d52f8ad3</originalsourceid><addsrcrecordid>eNptkE1LxDAQhoMouK7e_AEFr6ZmkibZHmXRVSh40XNI0qS29GNN2oP_3iy74GVPA8PzvsM8CN0DyYGAfOr8kFNCaU4Zu0ArKESJpSj4JVqRtMYAlFyjmxg7QoCRUq4Q3oW2xkZHV2dW93bp9dxOYzb5bP52WaWboMem1WM2OD3eoiuv--juTnONvl5fPrdvuPrYvW-fK2wZoTOmnhppJJPCGaMlZ8yDhZpxwhIgbckNpzUUVnDrS1t6WpTceSZrTv1G12yNHo69-zD9LC7OqpuWMKaTiopiQ0AAiEQ9HikbphiD82of2kGHXwVEHYSoJEQdhKgkJOH5CdeDSV837r_1bOAPtrRgwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2648016116</pqid></control><display><type>article</type><title>Grid-based calculation of the Lagrangian mean</title><source>Cambridge Journals</source><creator>Kafiabad, Hossein A.</creator><creatorcontrib>Kafiabad, Hossein A.</creatorcontrib><description>Lagrangian averaging has been shown to be more effective than the Eulerian mean in separating waves from slow dynamics in two time scale flows. It also appears in many reduced models that capture the wave feedback on the slow flow. Its calculation, however, requires tracking particles in time, which imposes several difficulties in grid-based numerical simulations or estimation from fixed-point measurements. To circumvent these difficulties, we propose a grid-based iterative method to calculate the Lagrangian mean without tracking particles in time, which also reduces computation, memory footprint and communication between processors in parallelised numerical models. To assess the accuracy of this method several examples are examined and discussed. We also explore an application of this method in the context of shallow-water equations by quantifying the validity of wave-averaged geostrophic balance – a modified form of geostrophic balance accounting for the effect of strong waves on slow dynamics.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2022.233</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Communication ; Computation ; Dynamics ; Fluid mechanics ; Iterative methods ; JFM Papers ; Mathematical models ; Numerical models ; Shallow water ; Shallow water equations ; Time series ; Tracking</subject><ispartof>Journal of fluid mechanics, 2022-06, Vol.940, Article A21</ispartof><rights>The Author(s), 2022. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-2f2b7b7376ebba7533f1c1d3503c307c95b52d14c65cf9c9f2495ef37d52f8ad3</citedby><cites>FETCH-LOGICAL-c302t-2f2b7b7376ebba7533f1c1d3503c307c95b52d14c65cf9c9f2495ef37d52f8ad3</cites><orcidid>0000-0002-8791-9217</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112022002336/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,315,782,786,27931,27932,55635</link.rule.ids></links><search><creatorcontrib>Kafiabad, Hossein A.</creatorcontrib><title>Grid-based calculation of the Lagrangian mean</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Lagrangian averaging has been shown to be more effective than the Eulerian mean in separating waves from slow dynamics in two time scale flows. It also appears in many reduced models that capture the wave feedback on the slow flow. Its calculation, however, requires tracking particles in time, which imposes several difficulties in grid-based numerical simulations or estimation from fixed-point measurements. To circumvent these difficulties, we propose a grid-based iterative method to calculate the Lagrangian mean without tracking particles in time, which also reduces computation, memory footprint and communication between processors in parallelised numerical models. To assess the accuracy of this method several examples are examined and discussed. We also explore an application of this method in the context of shallow-water equations by quantifying the validity of wave-averaged geostrophic balance – a modified form of geostrophic balance accounting for the effect of strong waves on slow dynamics.</description><subject>Communication</subject><subject>Computation</subject><subject>Dynamics</subject><subject>Fluid mechanics</subject><subject>Iterative methods</subject><subject>JFM Papers</subject><subject>Mathematical models</subject><subject>Numerical models</subject><subject>Shallow water</subject><subject>Shallow water equations</subject><subject>Time series</subject><subject>Tracking</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkE1LxDAQhoMouK7e_AEFr6ZmkibZHmXRVSh40XNI0qS29GNN2oP_3iy74GVPA8PzvsM8CN0DyYGAfOr8kFNCaU4Zu0ArKESJpSj4JVqRtMYAlFyjmxg7QoCRUq4Q3oW2xkZHV2dW93bp9dxOYzb5bP52WaWboMem1WM2OD3eoiuv--juTnONvl5fPrdvuPrYvW-fK2wZoTOmnhppJJPCGaMlZ8yDhZpxwhIgbckNpzUUVnDrS1t6WpTceSZrTv1G12yNHo69-zD9LC7OqpuWMKaTiopiQ0AAiEQ9HikbphiD82of2kGHXwVEHYSoJEQdhKgkJOH5CdeDSV837r_1bOAPtrRgwQ</recordid><startdate>20220610</startdate><enddate>20220610</enddate><creator>Kafiabad, Hossein A.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-8791-9217</orcidid></search><sort><creationdate>20220610</creationdate><title>Grid-based calculation of the Lagrangian mean</title><author>Kafiabad, Hossein A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-2f2b7b7376ebba7533f1c1d3503c307c95b52d14c65cf9c9f2495ef37d52f8ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Communication</topic><topic>Computation</topic><topic>Dynamics</topic><topic>Fluid mechanics</topic><topic>Iterative methods</topic><topic>JFM Papers</topic><topic>Mathematical models</topic><topic>Numerical models</topic><topic>Shallow water</topic><topic>Shallow water equations</topic><topic>Time series</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kafiabad, Hossein A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kafiabad, Hossein A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grid-based calculation of the Lagrangian mean</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2022-06-10</date><risdate>2022</risdate><volume>940</volume><artnum>A21</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Lagrangian averaging has been shown to be more effective than the Eulerian mean in separating waves from slow dynamics in two time scale flows. It also appears in many reduced models that capture the wave feedback on the slow flow. Its calculation, however, requires tracking particles in time, which imposes several difficulties in grid-based numerical simulations or estimation from fixed-point measurements. To circumvent these difficulties, we propose a grid-based iterative method to calculate the Lagrangian mean without tracking particles in time, which also reduces computation, memory footprint and communication between processors in parallelised numerical models. To assess the accuracy of this method several examples are examined and discussed. We also explore an application of this method in the context of shallow-water equations by quantifying the validity of wave-averaged geostrophic balance – a modified form of geostrophic balance accounting for the effect of strong waves on slow dynamics.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2022.233</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-8791-9217</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2022-06, Vol.940, Article A21
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_2648016116
source Cambridge Journals
subjects Communication
Computation
Dynamics
Fluid mechanics
Iterative methods
JFM Papers
Mathematical models
Numerical models
Shallow water
Shallow water equations
Time series
Tracking
title Grid-based calculation of the Lagrangian mean
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T09%3A13%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grid-based%20calculation%20of%20the%20Lagrangian%20mean&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Kafiabad,%20Hossein%20A.&rft.date=2022-06-10&rft.volume=940&rft.artnum=A21&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2022.233&rft_dat=%3Cproquest_cross%3E2648016116%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2648016116&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2022_233&rfr_iscdi=true