An experimental investigation of deep dynamic stall control using plasma actuators

The effect of active control by a nanosecond pulsed dielectric-barrier discharge plasma actuator was studied on a NACA 0012 airfoil, with a 7-inch chord (with 13-inch endplates) and a 14-inch span, for a sinusoidal motion profile from α  = 0° to 20° at Re c  = 300,000 and k  = 0.075. Characterizatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experiments in fluids 2022-04, Vol.63 (4), Article 69
Hauptverfasser: Castañeda, David, Whiting, Nicole, Webb, Nathan, Samimy, Mo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Experiments in fluids
container_volume 63
creator Castañeda, David
Whiting, Nicole
Webb, Nathan
Samimy, Mo
description The effect of active control by a nanosecond pulsed dielectric-barrier discharge plasma actuator was studied on a NACA 0012 airfoil, with a 7-inch chord (with 13-inch endplates) and a 14-inch span, for a sinusoidal motion profile from α  = 0° to 20° at Re c  = 300,000 and k  = 0.075. Characterization of the baseline flow highlighted the dominant influence of the dynamic stall vortex (DSV) and the subsequent separation, during the downstroke, on the aerodynamic forces. PIV results confirmed that actuation over a wide range of frequencies generates structures of various size and spacing through the manipulation of the Kelvin–Helmholtz instability. The results showed that the dominant DSV, present in the baseline case, was replaced by the structures induced by actuation. The effects of control on the flow field were used to explain the changes in aerodynamic loading, providing insight into the underlying physics of the observed control authority. Peak aerodynamic loads (lift, drag, and moment) were all reduced by control. Control also augmented the lift during the downstroke (separated flow), reduced lift hysteresis (responsible for vibratory loading), and increased the cycle-averaged lift-to-drag ratio. Graphical abstract
doi_str_mv 10.1007/s00348-022-03421-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2647680008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2647680008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b844c112bde6d255685e4529d7eab7bf12c7d8e1b60fde7979455f5b768d49b43</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gKuA6-hJmjTpchi8wYAgug5pkw4dOklNWkff3mgFd67OWXz_uXwIXVK4pgDyJgEUXBFgjOSGUXI4QgvKC0YopfwYLUCygnBV8lN0ltIOgIoK1AI9rzx2H4OL3d750fS48-8ujd3WjF3wOLTYOjdg--nNvmtwykiPm-DHGHo8pc5v8dCbtDfYNONkxhDTOTppTZ_cxW9dote725f1A9k83T-uVxvSFLQaSa04byhltXWlZUKUSjguWGWlM7WsW8oaaZWjdQmtdbKSFReiFbUsleVVzYsluprnDjG8TflovQtT9HmlZiXPGACoTLGZamJIKbpWD_lXEz81Bf3tTs_udHanf9zpQw4Vcyhl2G9d_Bv9T-oLUzBzIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2647680008</pqid></control><display><type>article</type><title>An experimental investigation of deep dynamic stall control using plasma actuators</title><source>SpringerLink Journals</source><creator>Castañeda, David ; Whiting, Nicole ; Webb, Nathan ; Samimy, Mo</creator><creatorcontrib>Castañeda, David ; Whiting, Nicole ; Webb, Nathan ; Samimy, Mo</creatorcontrib><description>The effect of active control by a nanosecond pulsed dielectric-barrier discharge plasma actuator was studied on a NACA 0012 airfoil, with a 7-inch chord (with 13-inch endplates) and a 14-inch span, for a sinusoidal motion profile from α  = 0° to 20° at Re c  = 300,000 and k  = 0.075. Characterization of the baseline flow highlighted the dominant influence of the dynamic stall vortex (DSV) and the subsequent separation, during the downstroke, on the aerodynamic forces. PIV results confirmed that actuation over a wide range of frequencies generates structures of various size and spacing through the manipulation of the Kelvin–Helmholtz instability. The results showed that the dominant DSV, present in the baseline case, was replaced by the structures induced by actuation. The effects of control on the flow field were used to explain the changes in aerodynamic loading, providing insight into the underlying physics of the observed control authority. Peak aerodynamic loads (lift, drag, and moment) were all reduced by control. Control also augmented the lift during the downstroke (separated flow), reduced lift hysteresis (responsible for vibratory loading), and increased the cycle-averaged lift-to-drag ratio. Graphical abstract</description><identifier>ISSN: 0723-4864</identifier><identifier>EISSN: 1432-1114</identifier><identifier>DOI: 10.1007/s00348-022-03421-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Active control ; Actuation ; Aerodynamic forces ; Aerodynamic loads ; Cycle ratio ; Dielectric barrier discharge ; Drag ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Flow separation ; Fluid- and Aerodynamics ; Heat and Mass Transfer ; Kelvin-Helmholtz instability ; Lift ; Motion effects ; Nanosecond pulses ; Research Article ; Stalling</subject><ispartof>Experiments in fluids, 2022-04, Vol.63 (4), Article 69</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b844c112bde6d255685e4529d7eab7bf12c7d8e1b60fde7979455f5b768d49b43</citedby><cites>FETCH-LOGICAL-c319t-b844c112bde6d255685e4529d7eab7bf12c7d8e1b60fde7979455f5b768d49b43</cites><orcidid>0000-0003-0234-9655 ; 0000-0003-4264-9943 ; 0000-0003-3900-1134</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00348-022-03421-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00348-022-03421-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Castañeda, David</creatorcontrib><creatorcontrib>Whiting, Nicole</creatorcontrib><creatorcontrib>Webb, Nathan</creatorcontrib><creatorcontrib>Samimy, Mo</creatorcontrib><title>An experimental investigation of deep dynamic stall control using plasma actuators</title><title>Experiments in fluids</title><addtitle>Exp Fluids</addtitle><description>The effect of active control by a nanosecond pulsed dielectric-barrier discharge plasma actuator was studied on a NACA 0012 airfoil, with a 7-inch chord (with 13-inch endplates) and a 14-inch span, for a sinusoidal motion profile from α  = 0° to 20° at Re c  = 300,000 and k  = 0.075. Characterization of the baseline flow highlighted the dominant influence of the dynamic stall vortex (DSV) and the subsequent separation, during the downstroke, on the aerodynamic forces. PIV results confirmed that actuation over a wide range of frequencies generates structures of various size and spacing through the manipulation of the Kelvin–Helmholtz instability. The results showed that the dominant DSV, present in the baseline case, was replaced by the structures induced by actuation. The effects of control on the flow field were used to explain the changes in aerodynamic loading, providing insight into the underlying physics of the observed control authority. Peak aerodynamic loads (lift, drag, and moment) were all reduced by control. Control also augmented the lift during the downstroke (separated flow), reduced lift hysteresis (responsible for vibratory loading), and increased the cycle-averaged lift-to-drag ratio. Graphical abstract</description><subject>Active control</subject><subject>Actuation</subject><subject>Aerodynamic forces</subject><subject>Aerodynamic loads</subject><subject>Cycle ratio</subject><subject>Dielectric barrier discharge</subject><subject>Drag</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Flow separation</subject><subject>Fluid- and Aerodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Kelvin-Helmholtz instability</subject><subject>Lift</subject><subject>Motion effects</subject><subject>Nanosecond pulses</subject><subject>Research Article</subject><subject>Stalling</subject><issn>0723-4864</issn><issn>1432-1114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI6-gKuA6-hJmjTpchi8wYAgug5pkw4dOklNWkff3mgFd67OWXz_uXwIXVK4pgDyJgEUXBFgjOSGUXI4QgvKC0YopfwYLUCygnBV8lN0ltIOgIoK1AI9rzx2H4OL3d750fS48-8ujd3WjF3wOLTYOjdg--nNvmtwykiPm-DHGHo8pc5v8dCbtDfYNONkxhDTOTppTZ_cxW9dote725f1A9k83T-uVxvSFLQaSa04byhltXWlZUKUSjguWGWlM7WsW8oaaZWjdQmtdbKSFReiFbUsleVVzYsluprnDjG8TflovQtT9HmlZiXPGACoTLGZamJIKbpWD_lXEz81Bf3tTs_udHanf9zpQw4Vcyhl2G9d_Bv9T-oLUzBzIQ</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Castañeda, David</creator><creator>Whiting, Nicole</creator><creator>Webb, Nathan</creator><creator>Samimy, Mo</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0234-9655</orcidid><orcidid>https://orcid.org/0000-0003-4264-9943</orcidid><orcidid>https://orcid.org/0000-0003-3900-1134</orcidid></search><sort><creationdate>20220401</creationdate><title>An experimental investigation of deep dynamic stall control using plasma actuators</title><author>Castañeda, David ; Whiting, Nicole ; Webb, Nathan ; Samimy, Mo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b844c112bde6d255685e4529d7eab7bf12c7d8e1b60fde7979455f5b768d49b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Active control</topic><topic>Actuation</topic><topic>Aerodynamic forces</topic><topic>Aerodynamic loads</topic><topic>Cycle ratio</topic><topic>Dielectric barrier discharge</topic><topic>Drag</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Flow separation</topic><topic>Fluid- and Aerodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Kelvin-Helmholtz instability</topic><topic>Lift</topic><topic>Motion effects</topic><topic>Nanosecond pulses</topic><topic>Research Article</topic><topic>Stalling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castañeda, David</creatorcontrib><creatorcontrib>Whiting, Nicole</creatorcontrib><creatorcontrib>Webb, Nathan</creatorcontrib><creatorcontrib>Samimy, Mo</creatorcontrib><collection>CrossRef</collection><jtitle>Experiments in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castañeda, David</au><au>Whiting, Nicole</au><au>Webb, Nathan</au><au>Samimy, Mo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An experimental investigation of deep dynamic stall control using plasma actuators</atitle><jtitle>Experiments in fluids</jtitle><stitle>Exp Fluids</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>63</volume><issue>4</issue><artnum>69</artnum><issn>0723-4864</issn><eissn>1432-1114</eissn><abstract>The effect of active control by a nanosecond pulsed dielectric-barrier discharge plasma actuator was studied on a NACA 0012 airfoil, with a 7-inch chord (with 13-inch endplates) and a 14-inch span, for a sinusoidal motion profile from α  = 0° to 20° at Re c  = 300,000 and k  = 0.075. Characterization of the baseline flow highlighted the dominant influence of the dynamic stall vortex (DSV) and the subsequent separation, during the downstroke, on the aerodynamic forces. PIV results confirmed that actuation over a wide range of frequencies generates structures of various size and spacing through the manipulation of the Kelvin–Helmholtz instability. The results showed that the dominant DSV, present in the baseline case, was replaced by the structures induced by actuation. The effects of control on the flow field were used to explain the changes in aerodynamic loading, providing insight into the underlying physics of the observed control authority. Peak aerodynamic loads (lift, drag, and moment) were all reduced by control. Control also augmented the lift during the downstroke (separated flow), reduced lift hysteresis (responsible for vibratory loading), and increased the cycle-averaged lift-to-drag ratio. Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00348-022-03421-w</doi><orcidid>https://orcid.org/0000-0003-0234-9655</orcidid><orcidid>https://orcid.org/0000-0003-4264-9943</orcidid><orcidid>https://orcid.org/0000-0003-3900-1134</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0723-4864
ispartof Experiments in fluids, 2022-04, Vol.63 (4), Article 69
issn 0723-4864
1432-1114
language eng
recordid cdi_proquest_journals_2647680008
source SpringerLink Journals
subjects Active control
Actuation
Aerodynamic forces
Aerodynamic loads
Cycle ratio
Dielectric barrier discharge
Drag
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Flow separation
Fluid- and Aerodynamics
Heat and Mass Transfer
Kelvin-Helmholtz instability
Lift
Motion effects
Nanosecond pulses
Research Article
Stalling
title An experimental investigation of deep dynamic stall control using plasma actuators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T21%3A07%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20experimental%20investigation%20of%20deep%20dynamic%20stall%20control%20using%20plasma%20actuators&rft.jtitle=Experiments%20in%20fluids&rft.au=Casta%C3%B1eda,%20David&rft.date=2022-04-01&rft.volume=63&rft.issue=4&rft.artnum=69&rft.issn=0723-4864&rft.eissn=1432-1114&rft_id=info:doi/10.1007/s00348-022-03421-w&rft_dat=%3Cproquest_cross%3E2647680008%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2647680008&rft_id=info:pmid/&rfr_iscdi=true