An experimental investigation of deep dynamic stall control using plasma actuators
The effect of active control by a nanosecond pulsed dielectric-barrier discharge plasma actuator was studied on a NACA 0012 airfoil, with a 7-inch chord (with 13-inch endplates) and a 14-inch span, for a sinusoidal motion profile from α = 0° to 20° at Re c = 300,000 and k = 0.075. Characterizatio...
Gespeichert in:
Veröffentlicht in: | Experiments in fluids 2022-04, Vol.63 (4), Article 69 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Experiments in fluids |
container_volume | 63 |
creator | Castañeda, David Whiting, Nicole Webb, Nathan Samimy, Mo |
description | The effect of active control by a nanosecond pulsed dielectric-barrier discharge plasma actuator was studied on a NACA 0012 airfoil, with a 7-inch chord (with 13-inch endplates) and a 14-inch span, for a sinusoidal motion profile from
α
= 0° to 20° at
Re
c
= 300,000 and
k
= 0.075. Characterization of the baseline flow highlighted the dominant influence of the dynamic stall vortex (DSV) and the subsequent separation, during the downstroke, on the aerodynamic forces. PIV results confirmed that actuation over a wide range of frequencies generates structures of various size and spacing through the manipulation of the Kelvin–Helmholtz instability. The results showed that the dominant DSV, present in the baseline case, was replaced by the structures induced by actuation. The effects of control on the flow field were used to explain the changes in aerodynamic loading, providing insight into the underlying physics of the observed control authority. Peak aerodynamic loads (lift, drag, and moment) were all reduced by control. Control also augmented the lift during the downstroke (separated flow), reduced lift hysteresis (responsible for vibratory loading), and increased the cycle-averaged lift-to-drag ratio.
Graphical abstract |
doi_str_mv | 10.1007/s00348-022-03421-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2647680008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2647680008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b844c112bde6d255685e4529d7eab7bf12c7d8e1b60fde7979455f5b768d49b43</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gKuA6-hJmjTpchi8wYAgug5pkw4dOklNWkff3mgFd67OWXz_uXwIXVK4pgDyJgEUXBFgjOSGUXI4QgvKC0YopfwYLUCygnBV8lN0ltIOgIoK1AI9rzx2H4OL3d750fS48-8ujd3WjF3wOLTYOjdg--nNvmtwykiPm-DHGHo8pc5v8dCbtDfYNONkxhDTOTppTZ_cxW9dote725f1A9k83T-uVxvSFLQaSa04byhltXWlZUKUSjguWGWlM7WsW8oaaZWjdQmtdbKSFReiFbUsleVVzYsluprnDjG8TflovQtT9HmlZiXPGACoTLGZamJIKbpWD_lXEz81Bf3tTs_udHanf9zpQw4Vcyhl2G9d_Bv9T-oLUzBzIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2647680008</pqid></control><display><type>article</type><title>An experimental investigation of deep dynamic stall control using plasma actuators</title><source>SpringerLink Journals</source><creator>Castañeda, David ; Whiting, Nicole ; Webb, Nathan ; Samimy, Mo</creator><creatorcontrib>Castañeda, David ; Whiting, Nicole ; Webb, Nathan ; Samimy, Mo</creatorcontrib><description>The effect of active control by a nanosecond pulsed dielectric-barrier discharge plasma actuator was studied on a NACA 0012 airfoil, with a 7-inch chord (with 13-inch endplates) and a 14-inch span, for a sinusoidal motion profile from
α
= 0° to 20° at
Re
c
= 300,000 and
k
= 0.075. Characterization of the baseline flow highlighted the dominant influence of the dynamic stall vortex (DSV) and the subsequent separation, during the downstroke, on the aerodynamic forces. PIV results confirmed that actuation over a wide range of frequencies generates structures of various size and spacing through the manipulation of the Kelvin–Helmholtz instability. The results showed that the dominant DSV, present in the baseline case, was replaced by the structures induced by actuation. The effects of control on the flow field were used to explain the changes in aerodynamic loading, providing insight into the underlying physics of the observed control authority. Peak aerodynamic loads (lift, drag, and moment) were all reduced by control. Control also augmented the lift during the downstroke (separated flow), reduced lift hysteresis (responsible for vibratory loading), and increased the cycle-averaged lift-to-drag ratio.
Graphical abstract</description><identifier>ISSN: 0723-4864</identifier><identifier>EISSN: 1432-1114</identifier><identifier>DOI: 10.1007/s00348-022-03421-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Active control ; Actuation ; Aerodynamic forces ; Aerodynamic loads ; Cycle ratio ; Dielectric barrier discharge ; Drag ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Flow separation ; Fluid- and Aerodynamics ; Heat and Mass Transfer ; Kelvin-Helmholtz instability ; Lift ; Motion effects ; Nanosecond pulses ; Research Article ; Stalling</subject><ispartof>Experiments in fluids, 2022-04, Vol.63 (4), Article 69</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b844c112bde6d255685e4529d7eab7bf12c7d8e1b60fde7979455f5b768d49b43</citedby><cites>FETCH-LOGICAL-c319t-b844c112bde6d255685e4529d7eab7bf12c7d8e1b60fde7979455f5b768d49b43</cites><orcidid>0000-0003-0234-9655 ; 0000-0003-4264-9943 ; 0000-0003-3900-1134</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00348-022-03421-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00348-022-03421-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Castañeda, David</creatorcontrib><creatorcontrib>Whiting, Nicole</creatorcontrib><creatorcontrib>Webb, Nathan</creatorcontrib><creatorcontrib>Samimy, Mo</creatorcontrib><title>An experimental investigation of deep dynamic stall control using plasma actuators</title><title>Experiments in fluids</title><addtitle>Exp Fluids</addtitle><description>The effect of active control by a nanosecond pulsed dielectric-barrier discharge plasma actuator was studied on a NACA 0012 airfoil, with a 7-inch chord (with 13-inch endplates) and a 14-inch span, for a sinusoidal motion profile from
α
= 0° to 20° at
Re
c
= 300,000 and
k
= 0.075. Characterization of the baseline flow highlighted the dominant influence of the dynamic stall vortex (DSV) and the subsequent separation, during the downstroke, on the aerodynamic forces. PIV results confirmed that actuation over a wide range of frequencies generates structures of various size and spacing through the manipulation of the Kelvin–Helmholtz instability. The results showed that the dominant DSV, present in the baseline case, was replaced by the structures induced by actuation. The effects of control on the flow field were used to explain the changes in aerodynamic loading, providing insight into the underlying physics of the observed control authority. Peak aerodynamic loads (lift, drag, and moment) were all reduced by control. Control also augmented the lift during the downstroke (separated flow), reduced lift hysteresis (responsible for vibratory loading), and increased the cycle-averaged lift-to-drag ratio.
Graphical abstract</description><subject>Active control</subject><subject>Actuation</subject><subject>Aerodynamic forces</subject><subject>Aerodynamic loads</subject><subject>Cycle ratio</subject><subject>Dielectric barrier discharge</subject><subject>Drag</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Flow separation</subject><subject>Fluid- and Aerodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Kelvin-Helmholtz instability</subject><subject>Lift</subject><subject>Motion effects</subject><subject>Nanosecond pulses</subject><subject>Research Article</subject><subject>Stalling</subject><issn>0723-4864</issn><issn>1432-1114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI6-gKuA6-hJmjTpchi8wYAgug5pkw4dOklNWkff3mgFd67OWXz_uXwIXVK4pgDyJgEUXBFgjOSGUXI4QgvKC0YopfwYLUCygnBV8lN0ltIOgIoK1AI9rzx2H4OL3d750fS48-8ujd3WjF3wOLTYOjdg--nNvmtwykiPm-DHGHo8pc5v8dCbtDfYNONkxhDTOTppTZ_cxW9dote725f1A9k83T-uVxvSFLQaSa04byhltXWlZUKUSjguWGWlM7WsW8oaaZWjdQmtdbKSFReiFbUsleVVzYsluprnDjG8TflovQtT9HmlZiXPGACoTLGZamJIKbpWD_lXEz81Bf3tTs_udHanf9zpQw4Vcyhl2G9d_Bv9T-oLUzBzIQ</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Castañeda, David</creator><creator>Whiting, Nicole</creator><creator>Webb, Nathan</creator><creator>Samimy, Mo</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0234-9655</orcidid><orcidid>https://orcid.org/0000-0003-4264-9943</orcidid><orcidid>https://orcid.org/0000-0003-3900-1134</orcidid></search><sort><creationdate>20220401</creationdate><title>An experimental investigation of deep dynamic stall control using plasma actuators</title><author>Castañeda, David ; Whiting, Nicole ; Webb, Nathan ; Samimy, Mo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b844c112bde6d255685e4529d7eab7bf12c7d8e1b60fde7979455f5b768d49b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Active control</topic><topic>Actuation</topic><topic>Aerodynamic forces</topic><topic>Aerodynamic loads</topic><topic>Cycle ratio</topic><topic>Dielectric barrier discharge</topic><topic>Drag</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Flow separation</topic><topic>Fluid- and Aerodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Kelvin-Helmholtz instability</topic><topic>Lift</topic><topic>Motion effects</topic><topic>Nanosecond pulses</topic><topic>Research Article</topic><topic>Stalling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castañeda, David</creatorcontrib><creatorcontrib>Whiting, Nicole</creatorcontrib><creatorcontrib>Webb, Nathan</creatorcontrib><creatorcontrib>Samimy, Mo</creatorcontrib><collection>CrossRef</collection><jtitle>Experiments in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castañeda, David</au><au>Whiting, Nicole</au><au>Webb, Nathan</au><au>Samimy, Mo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An experimental investigation of deep dynamic stall control using plasma actuators</atitle><jtitle>Experiments in fluids</jtitle><stitle>Exp Fluids</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>63</volume><issue>4</issue><artnum>69</artnum><issn>0723-4864</issn><eissn>1432-1114</eissn><abstract>The effect of active control by a nanosecond pulsed dielectric-barrier discharge plasma actuator was studied on a NACA 0012 airfoil, with a 7-inch chord (with 13-inch endplates) and a 14-inch span, for a sinusoidal motion profile from
α
= 0° to 20° at
Re
c
= 300,000 and
k
= 0.075. Characterization of the baseline flow highlighted the dominant influence of the dynamic stall vortex (DSV) and the subsequent separation, during the downstroke, on the aerodynamic forces. PIV results confirmed that actuation over a wide range of frequencies generates structures of various size and spacing through the manipulation of the Kelvin–Helmholtz instability. The results showed that the dominant DSV, present in the baseline case, was replaced by the structures induced by actuation. The effects of control on the flow field were used to explain the changes in aerodynamic loading, providing insight into the underlying physics of the observed control authority. Peak aerodynamic loads (lift, drag, and moment) were all reduced by control. Control also augmented the lift during the downstroke (separated flow), reduced lift hysteresis (responsible for vibratory loading), and increased the cycle-averaged lift-to-drag ratio.
Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00348-022-03421-w</doi><orcidid>https://orcid.org/0000-0003-0234-9655</orcidid><orcidid>https://orcid.org/0000-0003-4264-9943</orcidid><orcidid>https://orcid.org/0000-0003-3900-1134</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0723-4864 |
ispartof | Experiments in fluids, 2022-04, Vol.63 (4), Article 69 |
issn | 0723-4864 1432-1114 |
language | eng |
recordid | cdi_proquest_journals_2647680008 |
source | SpringerLink Journals |
subjects | Active control Actuation Aerodynamic forces Aerodynamic loads Cycle ratio Dielectric barrier discharge Drag Engineering Engineering Fluid Dynamics Engineering Thermodynamics Flow separation Fluid- and Aerodynamics Heat and Mass Transfer Kelvin-Helmholtz instability Lift Motion effects Nanosecond pulses Research Article Stalling |
title | An experimental investigation of deep dynamic stall control using plasma actuators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T21%3A07%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20experimental%20investigation%20of%20deep%20dynamic%20stall%20control%20using%20plasma%20actuators&rft.jtitle=Experiments%20in%20fluids&rft.au=Casta%C3%B1eda,%20David&rft.date=2022-04-01&rft.volume=63&rft.issue=4&rft.artnum=69&rft.issn=0723-4864&rft.eissn=1432-1114&rft_id=info:doi/10.1007/s00348-022-03421-w&rft_dat=%3Cproquest_cross%3E2647680008%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2647680008&rft_id=info:pmid/&rfr_iscdi=true |