Promoting the protonation step on the interface of titanium dioxide for selective photocatalytic reduction of CO2 to CH4 by using red phosphorus quantum dots

Enhancing the selectivity of hydrocarbon in CO 2 is a great challenge. Herein, taking widely-used and highly-stable TiO 2 as an example, we found that the protonation step, the key step for CH 4 production, can change from endoergic to exoergic by using red phosphorus quantum dots. Consequently, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2022-04, Vol.15 (4), p.3042-3049
Hauptverfasser: Lu, Yinglong, Liu, Minghao, Zheng, Ningchao, He, Xi, Hu, Ruiting, Wang, Ruilin, Zhou, Quan, Hu, Zhuofeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3049
container_issue 4
container_start_page 3042
container_title Nano research
container_volume 15
creator Lu, Yinglong
Liu, Minghao
Zheng, Ningchao
He, Xi
Hu, Ruiting
Wang, Ruilin
Zhou, Quan
Hu, Zhuofeng
description Enhancing the selectivity of hydrocarbon in CO 2 is a great challenge. Herein, taking widely-used and highly-stable TiO 2 as an example, we found that the protonation step, the key step for CH 4 production, can change from endoergic to exoergic by using red phosphorus quantum dots. Consequently, the main product in CO 2 reduction can be shifted from CO into CH 4 . The preparation method is very simple, which just ultrasonically treating the red P in the presence of TiO 2 . With an initial rate of CH 4 production of 4.69 µmol·g −1 h −1 , under simulated solar light, it manifests a significant 49.4-fold enhancement of CH 4 yield over TiO 2 . Density functional calculation indicates that the red P optimizes the surface electronic structure. The Gibbs free energy for CHO* formation (−1.12 eV) becomes lower than the desorption energy of the CO (−0.01 eV) when red P is introduced. This indicates that the CO intermediates on the surface are rapidly protonated to produce CHO*. Subsequently, the CHO* will be converted into CH 4 instead of being desorbed from the surface to produce CO. This study demonstrates that red P quantum dot is a promising candidate for the development of efficient photocatalyst for CO 2 photoreduction to CH 4 under solar light irradiation.
doi_str_mv 10.1007/s12274-021-3943-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2647475829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2647475829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-6961aa636b92ce8fb37e1de9dd9fd20a70d9fbea1c75c7c897b390b8a8eb299d3</originalsourceid><addsrcrecordid>eNp1kc9KAzEQxhdRsFYfwFvA82qS_ZPNUYpaoVAPeg7ZZLZNaZM2yYp9GN_VrKt4cmCYIXzfbwhfll0TfEswZneBUMrKHFOSF7ws8uokmxDOmxynOv3dCS3Ps4sQNhjXlJTNJPt88W7norErFNeA9t5FZ2U0zqIQYY_SHN6NjeA7qQC5DkUTpTX9DmnjPowG1DmPAmxBRfOeGOvEUDLK7TEahTzoXn0Dk3W2pCg6NJuXqD2iPgx3k2DwhNS-D-jQSxsHuIvhMjvr5DbA1c-cZm-PD6-zeb5YPj3P7he5Khoa85rXRMq6qFtOFTRdWzAgGrjWvNMUS4bT0oIkilWKqYaztuC4bWQDLeVcF9PsZuSm_x96CFFsXO9tOiloXbKSVQ3lSUVGlfIuBA-d2Huzk_4oCBZDCmJMQaQUxJCCqJKHjp6QtHYF_o_8v-kL5AaOYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2647475829</pqid></control><display><type>article</type><title>Promoting the protonation step on the interface of titanium dioxide for selective photocatalytic reduction of CO2 to CH4 by using red phosphorus quantum dots</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lu, Yinglong ; Liu, Minghao ; Zheng, Ningchao ; He, Xi ; Hu, Ruiting ; Wang, Ruilin ; Zhou, Quan ; Hu, Zhuofeng</creator><creatorcontrib>Lu, Yinglong ; Liu, Minghao ; Zheng, Ningchao ; He, Xi ; Hu, Ruiting ; Wang, Ruilin ; Zhou, Quan ; Hu, Zhuofeng</creatorcontrib><description>Enhancing the selectivity of hydrocarbon in CO 2 is a great challenge. Herein, taking widely-used and highly-stable TiO 2 as an example, we found that the protonation step, the key step for CH 4 production, can change from endoergic to exoergic by using red phosphorus quantum dots. Consequently, the main product in CO 2 reduction can be shifted from CO into CH 4 . The preparation method is very simple, which just ultrasonically treating the red P in the presence of TiO 2 . With an initial rate of CH 4 production of 4.69 µmol·g −1 h −1 , under simulated solar light, it manifests a significant 49.4-fold enhancement of CH 4 yield over TiO 2 . Density functional calculation indicates that the red P optimizes the surface electronic structure. The Gibbs free energy for CHO* formation (−1.12 eV) becomes lower than the desorption energy of the CO (−0.01 eV) when red P is introduced. This indicates that the CO intermediates on the surface are rapidly protonated to produce CHO*. Subsequently, the CHO* will be converted into CH 4 instead of being desorbed from the surface to produce CO. This study demonstrates that red P quantum dot is a promising candidate for the development of efficient photocatalyst for CO 2 photoreduction to CH 4 under solar light irradiation.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-021-3943-5</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Carbon dioxide ; Chemistry and Materials Science ; Condensed Matter Physics ; Electronic structure ; Free energy ; Gibbs free energy ; Intermediates ; Irradiation ; Light irradiation ; Materials Science ; Methane ; Nanotechnology ; Phosphorus ; Photocatalysis ; Photoreduction ; Protonation ; Quantum dots ; Radiation ; Reduction ; Research Article ; Selectivity ; Titanium dioxide</subject><ispartof>Nano research, 2022-04, Vol.15 (4), p.3042-3049</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-6961aa636b92ce8fb37e1de9dd9fd20a70d9fbea1c75c7c897b390b8a8eb299d3</citedby><cites>FETCH-LOGICAL-c382t-6961aa636b92ce8fb37e1de9dd9fd20a70d9fbea1c75c7c897b390b8a8eb299d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-021-3943-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-021-3943-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Lu, Yinglong</creatorcontrib><creatorcontrib>Liu, Minghao</creatorcontrib><creatorcontrib>Zheng, Ningchao</creatorcontrib><creatorcontrib>He, Xi</creatorcontrib><creatorcontrib>Hu, Ruiting</creatorcontrib><creatorcontrib>Wang, Ruilin</creatorcontrib><creatorcontrib>Zhou, Quan</creatorcontrib><creatorcontrib>Hu, Zhuofeng</creatorcontrib><title>Promoting the protonation step on the interface of titanium dioxide for selective photocatalytic reduction of CO2 to CH4 by using red phosphorus quantum dots</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Enhancing the selectivity of hydrocarbon in CO 2 is a great challenge. Herein, taking widely-used and highly-stable TiO 2 as an example, we found that the protonation step, the key step for CH 4 production, can change from endoergic to exoergic by using red phosphorus quantum dots. Consequently, the main product in CO 2 reduction can be shifted from CO into CH 4 . The preparation method is very simple, which just ultrasonically treating the red P in the presence of TiO 2 . With an initial rate of CH 4 production of 4.69 µmol·g −1 h −1 , under simulated solar light, it manifests a significant 49.4-fold enhancement of CH 4 yield over TiO 2 . Density functional calculation indicates that the red P optimizes the surface electronic structure. The Gibbs free energy for CHO* formation (−1.12 eV) becomes lower than the desorption energy of the CO (−0.01 eV) when red P is introduced. This indicates that the CO intermediates on the surface are rapidly protonated to produce CHO*. Subsequently, the CHO* will be converted into CH 4 instead of being desorbed from the surface to produce CO. This study demonstrates that red P quantum dot is a promising candidate for the development of efficient photocatalyst for CO 2 photoreduction to CH 4 under solar light irradiation.</description><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Carbon dioxide</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electronic structure</subject><subject>Free energy</subject><subject>Gibbs free energy</subject><subject>Intermediates</subject><subject>Irradiation</subject><subject>Light irradiation</subject><subject>Materials Science</subject><subject>Methane</subject><subject>Nanotechnology</subject><subject>Phosphorus</subject><subject>Photocatalysis</subject><subject>Photoreduction</subject><subject>Protonation</subject><subject>Quantum dots</subject><subject>Radiation</subject><subject>Reduction</subject><subject>Research Article</subject><subject>Selectivity</subject><subject>Titanium dioxide</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc9KAzEQxhdRsFYfwFvA82qS_ZPNUYpaoVAPeg7ZZLZNaZM2yYp9GN_VrKt4cmCYIXzfbwhfll0TfEswZneBUMrKHFOSF7ws8uokmxDOmxynOv3dCS3Ps4sQNhjXlJTNJPt88W7norErFNeA9t5FZ2U0zqIQYY_SHN6NjeA7qQC5DkUTpTX9DmnjPowG1DmPAmxBRfOeGOvEUDLK7TEahTzoXn0Dk3W2pCg6NJuXqD2iPgx3k2DwhNS-D-jQSxsHuIvhMjvr5DbA1c-cZm-PD6-zeb5YPj3P7he5Khoa85rXRMq6qFtOFTRdWzAgGrjWvNMUS4bT0oIkilWKqYaztuC4bWQDLeVcF9PsZuSm_x96CFFsXO9tOiloXbKSVQ3lSUVGlfIuBA-d2Huzk_4oCBZDCmJMQaQUxJCCqJKHjp6QtHYF_o_8v-kL5AaOYg</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Lu, Yinglong</creator><creator>Liu, Minghao</creator><creator>Zheng, Ningchao</creator><creator>He, Xi</creator><creator>Hu, Ruiting</creator><creator>Wang, Ruilin</creator><creator>Zhou, Quan</creator><creator>Hu, Zhuofeng</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20220401</creationdate><title>Promoting the protonation step on the interface of titanium dioxide for selective photocatalytic reduction of CO2 to CH4 by using red phosphorus quantum dots</title><author>Lu, Yinglong ; Liu, Minghao ; Zheng, Ningchao ; He, Xi ; Hu, Ruiting ; Wang, Ruilin ; Zhou, Quan ; Hu, Zhuofeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-6961aa636b92ce8fb37e1de9dd9fd20a70d9fbea1c75c7c897b390b8a8eb299d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Carbon dioxide</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electronic structure</topic><topic>Free energy</topic><topic>Gibbs free energy</topic><topic>Intermediates</topic><topic>Irradiation</topic><topic>Light irradiation</topic><topic>Materials Science</topic><topic>Methane</topic><topic>Nanotechnology</topic><topic>Phosphorus</topic><topic>Photocatalysis</topic><topic>Photoreduction</topic><topic>Protonation</topic><topic>Quantum dots</topic><topic>Radiation</topic><topic>Reduction</topic><topic>Research Article</topic><topic>Selectivity</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Yinglong</creatorcontrib><creatorcontrib>Liu, Minghao</creatorcontrib><creatorcontrib>Zheng, Ningchao</creatorcontrib><creatorcontrib>He, Xi</creatorcontrib><creatorcontrib>Hu, Ruiting</creatorcontrib><creatorcontrib>Wang, Ruilin</creatorcontrib><creatorcontrib>Zhou, Quan</creatorcontrib><creatorcontrib>Hu, Zhuofeng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Yinglong</au><au>Liu, Minghao</au><au>Zheng, Ningchao</au><au>He, Xi</au><au>Hu, Ruiting</au><au>Wang, Ruilin</au><au>Zhou, Quan</au><au>Hu, Zhuofeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Promoting the protonation step on the interface of titanium dioxide for selective photocatalytic reduction of CO2 to CH4 by using red phosphorus quantum dots</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>15</volume><issue>4</issue><spage>3042</spage><epage>3049</epage><pages>3042-3049</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Enhancing the selectivity of hydrocarbon in CO 2 is a great challenge. Herein, taking widely-used and highly-stable TiO 2 as an example, we found that the protonation step, the key step for CH 4 production, can change from endoergic to exoergic by using red phosphorus quantum dots. Consequently, the main product in CO 2 reduction can be shifted from CO into CH 4 . The preparation method is very simple, which just ultrasonically treating the red P in the presence of TiO 2 . With an initial rate of CH 4 production of 4.69 µmol·g −1 h −1 , under simulated solar light, it manifests a significant 49.4-fold enhancement of CH 4 yield over TiO 2 . Density functional calculation indicates that the red P optimizes the surface electronic structure. The Gibbs free energy for CHO* formation (−1.12 eV) becomes lower than the desorption energy of the CO (−0.01 eV) when red P is introduced. This indicates that the CO intermediates on the surface are rapidly protonated to produce CHO*. Subsequently, the CHO* will be converted into CH 4 instead of being desorbed from the surface to produce CO. This study demonstrates that red P quantum dot is a promising candidate for the development of efficient photocatalyst for CO 2 photoreduction to CH 4 under solar light irradiation.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-021-3943-5</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2022-04, Vol.15 (4), p.3042-3049
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_journals_2647475829
source SpringerLink Journals - AutoHoldings
subjects Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Carbon dioxide
Chemistry and Materials Science
Condensed Matter Physics
Electronic structure
Free energy
Gibbs free energy
Intermediates
Irradiation
Light irradiation
Materials Science
Methane
Nanotechnology
Phosphorus
Photocatalysis
Photoreduction
Protonation
Quantum dots
Radiation
Reduction
Research Article
Selectivity
Titanium dioxide
title Promoting the protonation step on the interface of titanium dioxide for selective photocatalytic reduction of CO2 to CH4 by using red phosphorus quantum dots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A30%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Promoting%20the%20protonation%20step%20on%20the%20interface%20of%20titanium%20dioxide%20for%20selective%20photocatalytic%20reduction%20of%20CO2%20to%20CH4%20by%20using%20red%20phosphorus%20quantum%20dots&rft.jtitle=Nano%20research&rft.au=Lu,%20Yinglong&rft.date=2022-04-01&rft.volume=15&rft.issue=4&rft.spage=3042&rft.epage=3049&rft.pages=3042-3049&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-021-3943-5&rft_dat=%3Cproquest_cross%3E2647475829%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2647475829&rft_id=info:pmid/&rfr_iscdi=true