A sixth order explicit method for structurally partitioned systems of ordinary differential equations

Systems of ordinary differential equations partitioned on base of their right-hand side dependencies on the unknown functions are considered. Explicit Runge–Kutta methods for such systems are presented. These methods require fewer right-hand side computations (stages) than classic single-scheme Rung...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Olemskoy, I. V., Kovrizhnykh, N. A., Eremin, A. S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2425
creator Olemskoy, I. V.
Kovrizhnykh, N. A.
Eremin, A. S.
description Systems of ordinary differential equations partitioned on base of their right-hand side dependencies on the unknown functions are considered. Explicit Runge–Kutta methods for such systems are presented. These methods require fewer right-hand side computations (stages) than classic single-scheme Runge–Kutta methods to provide the same order of convergence. The full system of order conditions is presented. The system is reduced to several independent linear systems with help of the simplifying relations. The algorithm of finding the solution of the order conditions system with six free parameters is given. A particular choice of free parameters and the corresponding computational scheme are presented. The advantage of the presented methods is shown by the numerical comparison to the known classic six order method by J. C. Butcher.
doi_str_mv 10.1063/5.0081532
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2647435580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2647435580</sourcerecordid><originalsourceid>FETCH-LOGICAL-p632-c6a075a39146c16fef5eb6717d8370af2bd0f015cc7549d54f6a639cdd76c4433</originalsourceid><addsrcrecordid>eNotkMtqwzAUREVpoWnaRf9A0F3B6ZX1spch9AWBbrLozih6EAXHciQZ4r-v02Q1mzNz5w5CzwQWBAR94wuAinBa3qAZ4ZwUUhBxi2YANStKRn_v0UNKe4CylrKaIbvEyZ_yDodobMT21Lde-4wPNu-CwS5EnHIcdB6iatsR9ypmn33orMFpTNkeEg7u7PadiiM23jkbbZe9arE9DurMpkd051Sb7NNV52jz8b5ZfRXrn8_v1XJd9IKWhRYKJFe0JkxoIpx13G6FJNJUVIJy5daAA8K1lpzVhjMnlKC1NkYKzRilc_Ryie1jOA425WYfhthNF5tSMMko5xVM1OuFStOj__2aPvrD1L4h0JxXbHhzXZH-AYu6ZhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2647435580</pqid></control><display><type>conference_proceeding</type><title>A sixth order explicit method for structurally partitioned systems of ordinary differential equations</title><source>AIP Journals Complete</source><creator>Olemskoy, I. V. ; Kovrizhnykh, N. A. ; Eremin, A. S.</creator><contributor>Simos, Theodore ; Tsitouras, Charalambos</contributor><creatorcontrib>Olemskoy, I. V. ; Kovrizhnykh, N. A. ; Eremin, A. S. ; Simos, Theodore ; Tsitouras, Charalambos</creatorcontrib><description>Systems of ordinary differential equations partitioned on base of their right-hand side dependencies on the unknown functions are considered. Explicit Runge–Kutta methods for such systems are presented. These methods require fewer right-hand side computations (stages) than classic single-scheme Runge–Kutta methods to provide the same order of convergence. The full system of order conditions is presented. The system is reduced to several independent linear systems with help of the simplifying relations. The algorithm of finding the solution of the order conditions system with six free parameters is given. A particular choice of free parameters and the corresponding computational scheme are presented. The advantage of the presented methods is shown by the numerical comparison to the known classic six order method by J. C. Butcher.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0081532</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Differential equations ; Linear systems ; Ordinary differential equations ; Parameters ; Runge-Kutta method</subject><ispartof>AIP conference proceedings, 2022, Vol.2425 (1)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0081532$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Simos, Theodore</contributor><contributor>Tsitouras, Charalambos</contributor><creatorcontrib>Olemskoy, I. V.</creatorcontrib><creatorcontrib>Kovrizhnykh, N. A.</creatorcontrib><creatorcontrib>Eremin, A. S.</creatorcontrib><title>A sixth order explicit method for structurally partitioned systems of ordinary differential equations</title><title>AIP conference proceedings</title><description>Systems of ordinary differential equations partitioned on base of their right-hand side dependencies on the unknown functions are considered. Explicit Runge–Kutta methods for such systems are presented. These methods require fewer right-hand side computations (stages) than classic single-scheme Runge–Kutta methods to provide the same order of convergence. The full system of order conditions is presented. The system is reduced to several independent linear systems with help of the simplifying relations. The algorithm of finding the solution of the order conditions system with six free parameters is given. A particular choice of free parameters and the corresponding computational scheme are presented. The advantage of the presented methods is shown by the numerical comparison to the known classic six order method by J. C. Butcher.</description><subject>Algorithms</subject><subject>Differential equations</subject><subject>Linear systems</subject><subject>Ordinary differential equations</subject><subject>Parameters</subject><subject>Runge-Kutta method</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkMtqwzAUREVpoWnaRf9A0F3B6ZX1spch9AWBbrLozih6EAXHciQZ4r-v02Q1mzNz5w5CzwQWBAR94wuAinBa3qAZ4ZwUUhBxi2YANStKRn_v0UNKe4CylrKaIbvEyZ_yDodobMT21Lde-4wPNu-CwS5EnHIcdB6iatsR9ypmn33orMFpTNkeEg7u7PadiiM23jkbbZe9arE9DurMpkd051Sb7NNV52jz8b5ZfRXrn8_v1XJd9IKWhRYKJFe0JkxoIpx13G6FJNJUVIJy5daAA8K1lpzVhjMnlKC1NkYKzRilc_Ryie1jOA425WYfhthNF5tSMMko5xVM1OuFStOj__2aPvrD1L4h0JxXbHhzXZH-AYu6ZhQ</recordid><startdate>20220406</startdate><enddate>20220406</enddate><creator>Olemskoy, I. V.</creator><creator>Kovrizhnykh, N. A.</creator><creator>Eremin, A. S.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20220406</creationdate><title>A sixth order explicit method for structurally partitioned systems of ordinary differential equations</title><author>Olemskoy, I. V. ; Kovrizhnykh, N. A. ; Eremin, A. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p632-c6a075a39146c16fef5eb6717d8370af2bd0f015cc7549d54f6a639cdd76c4433</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Differential equations</topic><topic>Linear systems</topic><topic>Ordinary differential equations</topic><topic>Parameters</topic><topic>Runge-Kutta method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olemskoy, I. V.</creatorcontrib><creatorcontrib>Kovrizhnykh, N. A.</creatorcontrib><creatorcontrib>Eremin, A. S.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olemskoy, I. V.</au><au>Kovrizhnykh, N. A.</au><au>Eremin, A. S.</au><au>Simos, Theodore</au><au>Tsitouras, Charalambos</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A sixth order explicit method for structurally partitioned systems of ordinary differential equations</atitle><btitle>AIP conference proceedings</btitle><date>2022-04-06</date><risdate>2022</risdate><volume>2425</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Systems of ordinary differential equations partitioned on base of their right-hand side dependencies on the unknown functions are considered. Explicit Runge–Kutta methods for such systems are presented. These methods require fewer right-hand side computations (stages) than classic single-scheme Runge–Kutta methods to provide the same order of convergence. The full system of order conditions is presented. The system is reduced to several independent linear systems with help of the simplifying relations. The algorithm of finding the solution of the order conditions system with six free parameters is given. A particular choice of free parameters and the corresponding computational scheme are presented. The advantage of the presented methods is shown by the numerical comparison to the known classic six order method by J. C. Butcher.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0081532</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2022, Vol.2425 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2647435580
source AIP Journals Complete
subjects Algorithms
Differential equations
Linear systems
Ordinary differential equations
Parameters
Runge-Kutta method
title A sixth order explicit method for structurally partitioned systems of ordinary differential equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A30%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20sixth%20order%20explicit%20method%20for%20structurally%20partitioned%20systems%20of%20ordinary%20differential%20equations&rft.btitle=AIP%20conference%20proceedings&rft.au=Olemskoy,%20I.%20V.&rft.date=2022-04-06&rft.volume=2425&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0081532&rft_dat=%3Cproquest_scita%3E2647435580%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2647435580&rft_id=info:pmid/&rfr_iscdi=true