A sixth order explicit method for structurally partitioned systems of ordinary differential equations
Systems of ordinary differential equations partitioned on base of their right-hand side dependencies on the unknown functions are considered. Explicit Runge–Kutta methods for such systems are presented. These methods require fewer right-hand side computations (stages) than classic single-scheme Rung...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2425 |
creator | Olemskoy, I. V. Kovrizhnykh, N. A. Eremin, A. S. |
description | Systems of ordinary differential equations partitioned on base of their right-hand side dependencies on the unknown functions are considered. Explicit Runge–Kutta methods for such systems are presented. These methods require fewer right-hand side computations (stages) than classic single-scheme Runge–Kutta methods to provide the same order of convergence. The full system of order conditions is presented. The system is reduced to several independent linear systems with help of the simplifying relations. The algorithm of finding the solution of the order conditions system with six free parameters is given. A particular choice of free parameters and the corresponding computational scheme are presented. The advantage of the presented methods is shown by the numerical comparison to the known classic six order method by J. C. Butcher. |
doi_str_mv | 10.1063/5.0081532 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2647435580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2647435580</sourcerecordid><originalsourceid>FETCH-LOGICAL-p632-c6a075a39146c16fef5eb6717d8370af2bd0f015cc7549d54f6a639cdd76c4433</originalsourceid><addsrcrecordid>eNotkMtqwzAUREVpoWnaRf9A0F3B6ZX1spch9AWBbrLozih6EAXHciQZ4r-v02Q1mzNz5w5CzwQWBAR94wuAinBa3qAZ4ZwUUhBxi2YANStKRn_v0UNKe4CylrKaIbvEyZ_yDodobMT21Lde-4wPNu-CwS5EnHIcdB6iatsR9ypmn33orMFpTNkeEg7u7PadiiM23jkbbZe9arE9DurMpkd051Sb7NNV52jz8b5ZfRXrn8_v1XJd9IKWhRYKJFe0JkxoIpx13G6FJNJUVIJy5daAA8K1lpzVhjMnlKC1NkYKzRilc_Ryie1jOA425WYfhthNF5tSMMko5xVM1OuFStOj__2aPvrD1L4h0JxXbHhzXZH-AYu6ZhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2647435580</pqid></control><display><type>conference_proceeding</type><title>A sixth order explicit method for structurally partitioned systems of ordinary differential equations</title><source>AIP Journals Complete</source><creator>Olemskoy, I. V. ; Kovrizhnykh, N. A. ; Eremin, A. S.</creator><contributor>Simos, Theodore ; Tsitouras, Charalambos</contributor><creatorcontrib>Olemskoy, I. V. ; Kovrizhnykh, N. A. ; Eremin, A. S. ; Simos, Theodore ; Tsitouras, Charalambos</creatorcontrib><description>Systems of ordinary differential equations partitioned on base of their right-hand side dependencies on the unknown functions are considered. Explicit Runge–Kutta methods for such systems are presented. These methods require fewer right-hand side computations (stages) than classic single-scheme Runge–Kutta methods to provide the same order of convergence. The full system of order conditions is presented. The system is reduced to several independent linear systems with help of the simplifying relations. The algorithm of finding the solution of the order conditions system with six free parameters is given. A particular choice of free parameters and the corresponding computational scheme are presented. The advantage of the presented methods is shown by the numerical comparison to the known classic six order method by J. C. Butcher.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0081532</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Differential equations ; Linear systems ; Ordinary differential equations ; Parameters ; Runge-Kutta method</subject><ispartof>AIP conference proceedings, 2022, Vol.2425 (1)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0081532$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Simos, Theodore</contributor><contributor>Tsitouras, Charalambos</contributor><creatorcontrib>Olemskoy, I. V.</creatorcontrib><creatorcontrib>Kovrizhnykh, N. A.</creatorcontrib><creatorcontrib>Eremin, A. S.</creatorcontrib><title>A sixth order explicit method for structurally partitioned systems of ordinary differential equations</title><title>AIP conference proceedings</title><description>Systems of ordinary differential equations partitioned on base of their right-hand side dependencies on the unknown functions are considered. Explicit Runge–Kutta methods for such systems are presented. These methods require fewer right-hand side computations (stages) than classic single-scheme Runge–Kutta methods to provide the same order of convergence. The full system of order conditions is presented. The system is reduced to several independent linear systems with help of the simplifying relations. The algorithm of finding the solution of the order conditions system with six free parameters is given. A particular choice of free parameters and the corresponding computational scheme are presented. The advantage of the presented methods is shown by the numerical comparison to the known classic six order method by J. C. Butcher.</description><subject>Algorithms</subject><subject>Differential equations</subject><subject>Linear systems</subject><subject>Ordinary differential equations</subject><subject>Parameters</subject><subject>Runge-Kutta method</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkMtqwzAUREVpoWnaRf9A0F3B6ZX1spch9AWBbrLozih6EAXHciQZ4r-v02Q1mzNz5w5CzwQWBAR94wuAinBa3qAZ4ZwUUhBxi2YANStKRn_v0UNKe4CylrKaIbvEyZ_yDodobMT21Lde-4wPNu-CwS5EnHIcdB6iatsR9ypmn33orMFpTNkeEg7u7PadiiM23jkbbZe9arE9DurMpkd051Sb7NNV52jz8b5ZfRXrn8_v1XJd9IKWhRYKJFe0JkxoIpx13G6FJNJUVIJy5daAA8K1lpzVhjMnlKC1NkYKzRilc_Ryie1jOA425WYfhthNF5tSMMko5xVM1OuFStOj__2aPvrD1L4h0JxXbHhzXZH-AYu6ZhQ</recordid><startdate>20220406</startdate><enddate>20220406</enddate><creator>Olemskoy, I. V.</creator><creator>Kovrizhnykh, N. A.</creator><creator>Eremin, A. S.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20220406</creationdate><title>A sixth order explicit method for structurally partitioned systems of ordinary differential equations</title><author>Olemskoy, I. V. ; Kovrizhnykh, N. A. ; Eremin, A. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p632-c6a075a39146c16fef5eb6717d8370af2bd0f015cc7549d54f6a639cdd76c4433</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Differential equations</topic><topic>Linear systems</topic><topic>Ordinary differential equations</topic><topic>Parameters</topic><topic>Runge-Kutta method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olemskoy, I. V.</creatorcontrib><creatorcontrib>Kovrizhnykh, N. A.</creatorcontrib><creatorcontrib>Eremin, A. S.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olemskoy, I. V.</au><au>Kovrizhnykh, N. A.</au><au>Eremin, A. S.</au><au>Simos, Theodore</au><au>Tsitouras, Charalambos</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A sixth order explicit method for structurally partitioned systems of ordinary differential equations</atitle><btitle>AIP conference proceedings</btitle><date>2022-04-06</date><risdate>2022</risdate><volume>2425</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Systems of ordinary differential equations partitioned on base of their right-hand side dependencies on the unknown functions are considered. Explicit Runge–Kutta methods for such systems are presented. These methods require fewer right-hand side computations (stages) than classic single-scheme Runge–Kutta methods to provide the same order of convergence. The full system of order conditions is presented. The system is reduced to several independent linear systems with help of the simplifying relations. The algorithm of finding the solution of the order conditions system with six free parameters is given. A particular choice of free parameters and the corresponding computational scheme are presented. The advantage of the presented methods is shown by the numerical comparison to the known classic six order method by J. C. Butcher.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0081532</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2022, Vol.2425 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2647435580 |
source | AIP Journals Complete |
subjects | Algorithms Differential equations Linear systems Ordinary differential equations Parameters Runge-Kutta method |
title | A sixth order explicit method for structurally partitioned systems of ordinary differential equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A30%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20sixth%20order%20explicit%20method%20for%20structurally%20partitioned%20systems%20of%20ordinary%20differential%20equations&rft.btitle=AIP%20conference%20proceedings&rft.au=Olemskoy,%20I.%20V.&rft.date=2022-04-06&rft.volume=2425&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0081532&rft_dat=%3Cproquest_scita%3E2647435580%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2647435580&rft_id=info:pmid/&rfr_iscdi=true |