Combination of Auto-encoder architecture and super resolution for better segmentation of thinned and cursive handwritten documents

In neural networks an auto-encoder architecture has several applications such as image denoising, feature reduction, data compression, image colorization, dimensanality reduction, segmentation and so on. Super-resolution is used to upgrade the low resolution images into high resolution. In order to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2022-03, Vol.2236 (1), p.12007
Hauptverfasser: MP, Ayyoob, Ilyas.P, Muhamed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12007
container_title Journal of physics. Conference series
container_volume 2236
creator MP, Ayyoob
Ilyas.P, Muhamed
description In neural networks an auto-encoder architecture has several applications such as image denoising, feature reduction, data compression, image colorization, dimensanality reduction, segmentation and so on. Super-resolution is used to upgrade the low resolution images into high resolution. In order to get a better result on segmentation of thinned hand written images, this paper proposes a method of combination of associative auto-encoder architecture and super resolution for pixel expansion. Experimental results show that the combination of proposed network and super resolution method accurately segments the thinned handwritten Arabic words.
doi_str_mv 10.1088/1742-6596/2236/1/012007
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2647395197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2647395197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2397-a06f7770c813c5af13d59e7e176f4d729b5bf1232ee9ad569f7ea89fcaf920113</originalsourceid><addsrcrecordid>eNqFkM1PwyAchhujiXP6N0jiuZaPtZTjsviVLPGiZ0LpD9dlgwpU49W_XLqaeZQL8ON9XpIny64JviW4rgvCFzSvSlEVlLKqIAUmFGN-ks2OL6fHc12fZxchbDFmafFZ9r1y-6azKnbOImfQcoguB6tdCx4przddBB0HD0jZFoWhT2MPwe2GA2GcRw3EmKYB3vZg47EpbjproT1wevCh-wC0SZdP36W8Ra3TwwiEy-zMqF2Aq999nr3e372sHvP188PTarnONWWC5wpXhnOOdU2YLpUhrC0FcCC8MouWU9GUjSGUUQCh2rIShoOqhdHKCIoJYfPsZurtvXsfIES5dYO36UtJqwVnoiSCpxSfUtq7EDwY2ftur_yXJFiOwuWoUo5a5ShcEjkJTySbyM71f9X_UT_YUIW5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2647395197</pqid></control><display><type>article</type><title>Combination of Auto-encoder architecture and super resolution for better segmentation of thinned and cursive handwritten documents</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>MP, Ayyoob ; Ilyas.P, Muhamed</creator><creatorcontrib>MP, Ayyoob ; Ilyas.P, Muhamed</creatorcontrib><description>In neural networks an auto-encoder architecture has several applications such as image denoising, feature reduction, data compression, image colorization, dimensanality reduction, segmentation and so on. Super-resolution is used to upgrade the low resolution images into high resolution. In order to get a better result on segmentation of thinned hand written images, this paper proposes a method of combination of associative auto-encoder architecture and super resolution for pixel expansion. Experimental results show that the combination of proposed network and super resolution method accurately segments the thinned handwritten Arabic words.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2236/1/012007</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Coders ; Data compression ; Handwriting ; Image compression ; Image resolution ; Image segmentation ; Neural networks ; Physics ; Reduction</subject><ispartof>Journal of physics. Conference series, 2022-03, Vol.2236 (1), p.12007</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/2236/1/012007/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>MP, Ayyoob</creatorcontrib><creatorcontrib>Ilyas.P, Muhamed</creatorcontrib><title>Combination of Auto-encoder architecture and super resolution for better segmentation of thinned and cursive handwritten documents</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>In neural networks an auto-encoder architecture has several applications such as image denoising, feature reduction, data compression, image colorization, dimensanality reduction, segmentation and so on. Super-resolution is used to upgrade the low resolution images into high resolution. In order to get a better result on segmentation of thinned hand written images, this paper proposes a method of combination of associative auto-encoder architecture and super resolution for pixel expansion. Experimental results show that the combination of proposed network and super resolution method accurately segments the thinned handwritten Arabic words.</description><subject>Coders</subject><subject>Data compression</subject><subject>Handwriting</subject><subject>Image compression</subject><subject>Image resolution</subject><subject>Image segmentation</subject><subject>Neural networks</subject><subject>Physics</subject><subject>Reduction</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkM1PwyAchhujiXP6N0jiuZaPtZTjsviVLPGiZ0LpD9dlgwpU49W_XLqaeZQL8ON9XpIny64JviW4rgvCFzSvSlEVlLKqIAUmFGN-ks2OL6fHc12fZxchbDFmafFZ9r1y-6azKnbOImfQcoguB6tdCx4przddBB0HD0jZFoWhT2MPwe2GA2GcRw3EmKYB3vZg47EpbjproT1wevCh-wC0SZdP36W8Ra3TwwiEy-zMqF2Aq999nr3e372sHvP188PTarnONWWC5wpXhnOOdU2YLpUhrC0FcCC8MouWU9GUjSGUUQCh2rIShoOqhdHKCIoJYfPsZurtvXsfIES5dYO36UtJqwVnoiSCpxSfUtq7EDwY2ftur_yXJFiOwuWoUo5a5ShcEjkJTySbyM71f9X_UT_YUIW5</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>MP, Ayyoob</creator><creator>Ilyas.P, Muhamed</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20220301</creationdate><title>Combination of Auto-encoder architecture and super resolution for better segmentation of thinned and cursive handwritten documents</title><author>MP, Ayyoob ; Ilyas.P, Muhamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2397-a06f7770c813c5af13d59e7e176f4d729b5bf1232ee9ad569f7ea89fcaf920113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Coders</topic><topic>Data compression</topic><topic>Handwriting</topic><topic>Image compression</topic><topic>Image resolution</topic><topic>Image segmentation</topic><topic>Neural networks</topic><topic>Physics</topic><topic>Reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MP, Ayyoob</creatorcontrib><creatorcontrib>Ilyas.P, Muhamed</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MP, Ayyoob</au><au>Ilyas.P, Muhamed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combination of Auto-encoder architecture and super resolution for better segmentation of thinned and cursive handwritten documents</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>2236</volume><issue>1</issue><spage>12007</spage><pages>12007-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>In neural networks an auto-encoder architecture has several applications such as image denoising, feature reduction, data compression, image colorization, dimensanality reduction, segmentation and so on. Super-resolution is used to upgrade the low resolution images into high resolution. In order to get a better result on segmentation of thinned hand written images, this paper proposes a method of combination of associative auto-encoder architecture and super resolution for pixel expansion. Experimental results show that the combination of proposed network and super resolution method accurately segments the thinned handwritten Arabic words.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2236/1/012007</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2022-03, Vol.2236 (1), p.12007
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2647395197
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Coders
Data compression
Handwriting
Image compression
Image resolution
Image segmentation
Neural networks
Physics
Reduction
title Combination of Auto-encoder architecture and super resolution for better segmentation of thinned and cursive handwritten documents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A22%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combination%20of%20Auto-encoder%20architecture%20and%20super%20resolution%20for%20better%20segmentation%20of%20thinned%20and%20cursive%20handwritten%20documents&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=MP,%20Ayyoob&rft.date=2022-03-01&rft.volume=2236&rft.issue=1&rft.spage=12007&rft.pages=12007-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2236/1/012007&rft_dat=%3Cproquest_iop_j%3E2647395197%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2647395197&rft_id=info:pmid/&rfr_iscdi=true