TOPOLOGICAL 4-MANIFOLDS WITH 4-DIMENSIONAL FUNDAMENTAL GROUP
Let $\pi$ be a group satisfying the Farrell–Jones conjecture and assume that $B\pi$ is a 4-dimensional Poincaré duality space. We consider topological, closed, connected manifolds with fundamental group $\pi$ whose canonical map to $B\pi$ has degree 1, and show that two such manifolds are s-cobordan...
Gespeichert in:
Veröffentlicht in: | Glasgow mathematical journal 2022-05, Vol.64 (2), p.454-461 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 461 |
---|---|
container_issue | 2 |
container_start_page | 454 |
container_title | Glasgow mathematical journal |
container_volume | 64 |
creator | KASPROWSKI, DANIEL LAND, MARKUS |
description | Let $\pi$ be a group satisfying the Farrell–Jones conjecture and assume that $B\pi$ is a 4-dimensional Poincaré duality space. We consider topological, closed, connected manifolds with fundamental group $\pi$ whose canonical map to $B\pi$ has degree 1, and show that two such manifolds are s-cobordant if and only if their equivariant intersection forms are isometric and they have the same Kirby–Siebenmann invariant. If $\pi$ is good in the sense of Freedman, it follows that two such manifolds are homeomorphic if and only if they are homotopy equivalent and have the same Kirby–Siebenmann invariant. This shows rigidity in many cases that lie between aspherical 4-manifolds, where rigidity is expected by Borel’s conjecture, and simply connected manifolds where rigidity is a consequence of Freedman’s classification results. |
doi_str_mv | 10.1017/S0017089521000215 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2647110330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0017089521000215</cupid><sourcerecordid>2647110330</sourcerecordid><originalsourceid>FETCH-LOGICAL-c269t-d39d7f185a03be72b741834c07faa8712b69eb51821d827b243b4bc6d577f8b73</originalsourceid><addsrcrecordid>eNp1UEtLw0AQXkTBWP0B3gqeozO7m-wGvISmaQNpUkyC3kI2D2mxtm7ag__eDQ14EC8z8833GBhC7hEeEVA8ZWAqSM-hCAAUnQtiIXc92wHv7ZJYA20P_DW56futgcwgizzn6TqN00U08-Mpt1d-EoVpHGTT1yhfmkUQreZJFqWJocMiCXwDczMvXtJifUuuuuqjb-_GPiFFOM9nS3sMtGvqeke7YV4jOpROBUy1girBUTJeg-iqSgqkyvVa5aCk2EgqFOVMcVW7jSNEJ5VgE_Jwzj3o_dep7Y_ldn_Sn-ZkSV0uEIExMCo8q2q973vdduVBb3aV_i4RyuFJ5Z8nGQ8bPdVO6U3z3v5G_-_6AfaTYTE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2647110330</pqid></control><display><type>article</type><title>TOPOLOGICAL 4-MANIFOLDS WITH 4-DIMENSIONAL FUNDAMENTAL GROUP</title><source>Cambridge University Press Journals Complete</source><creator>KASPROWSKI, DANIEL ; LAND, MARKUS</creator><creatorcontrib>KASPROWSKI, DANIEL ; LAND, MARKUS</creatorcontrib><description>Let $\pi$ be a group satisfying the Farrell–Jones conjecture and assume that $B\pi$ is a 4-dimensional Poincaré duality space. We consider topological, closed, connected manifolds with fundamental group $\pi$ whose canonical map to $B\pi$ has degree 1, and show that two such manifolds are s-cobordant if and only if their equivariant intersection forms are isometric and they have the same Kirby–Siebenmann invariant. If $\pi$ is good in the sense of Freedman, it follows that two such manifolds are homeomorphic if and only if they are homotopy equivalent and have the same Kirby–Siebenmann invariant. This shows rigidity in many cases that lie between aspherical 4-manifolds, where rigidity is expected by Borel’s conjecture, and simply connected manifolds where rigidity is a consequence of Freedman’s classification results.</description><identifier>ISSN: 0017-0895</identifier><identifier>EISSN: 1469-509X</identifier><identifier>DOI: 10.1017/S0017089521000215</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Classification ; Invariants ; Manifolds (mathematics) ; Rigidity ; Surgery ; Topology</subject><ispartof>Glasgow mathematical journal, 2022-05, Vol.64 (2), p.454-461</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c269t-d39d7f185a03be72b741834c07faa8712b69eb51821d827b243b4bc6d577f8b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0017089521000215/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,777,781,27905,27906,55609</link.rule.ids></links><search><creatorcontrib>KASPROWSKI, DANIEL</creatorcontrib><creatorcontrib>LAND, MARKUS</creatorcontrib><title>TOPOLOGICAL 4-MANIFOLDS WITH 4-DIMENSIONAL FUNDAMENTAL GROUP</title><title>Glasgow mathematical journal</title><addtitle>Glasgow Math. J</addtitle><description>Let $\pi$ be a group satisfying the Farrell–Jones conjecture and assume that $B\pi$ is a 4-dimensional Poincaré duality space. We consider topological, closed, connected manifolds with fundamental group $\pi$ whose canonical map to $B\pi$ has degree 1, and show that two such manifolds are s-cobordant if and only if their equivariant intersection forms are isometric and they have the same Kirby–Siebenmann invariant. If $\pi$ is good in the sense of Freedman, it follows that two such manifolds are homeomorphic if and only if they are homotopy equivalent and have the same Kirby–Siebenmann invariant. This shows rigidity in many cases that lie between aspherical 4-manifolds, where rigidity is expected by Borel’s conjecture, and simply connected manifolds where rigidity is a consequence of Freedman’s classification results.</description><subject>Classification</subject><subject>Invariants</subject><subject>Manifolds (mathematics)</subject><subject>Rigidity</subject><subject>Surgery</subject><subject>Topology</subject><issn>0017-0895</issn><issn>1469-509X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UEtLw0AQXkTBWP0B3gqeozO7m-wGvISmaQNpUkyC3kI2D2mxtm7ag__eDQ14EC8z8833GBhC7hEeEVA8ZWAqSM-hCAAUnQtiIXc92wHv7ZJYA20P_DW56futgcwgizzn6TqN00U08-Mpt1d-EoVpHGTT1yhfmkUQreZJFqWJocMiCXwDczMvXtJifUuuuuqjb-_GPiFFOM9nS3sMtGvqeke7YV4jOpROBUy1girBUTJeg-iqSgqkyvVa5aCk2EgqFOVMcVW7jSNEJ5VgE_Jwzj3o_dep7Y_ldn_Sn-ZkSV0uEIExMCo8q2q973vdduVBb3aV_i4RyuFJ5Z8nGQ8bPdVO6U3z3v5G_-_6AfaTYTE</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>KASPROWSKI, DANIEL</creator><creator>LAND, MARKUS</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20220501</creationdate><title>TOPOLOGICAL 4-MANIFOLDS WITH 4-DIMENSIONAL FUNDAMENTAL GROUP</title><author>KASPROWSKI, DANIEL ; LAND, MARKUS</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c269t-d39d7f185a03be72b741834c07faa8712b69eb51821d827b243b4bc6d577f8b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Classification</topic><topic>Invariants</topic><topic>Manifolds (mathematics)</topic><topic>Rigidity</topic><topic>Surgery</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KASPROWSKI, DANIEL</creatorcontrib><creatorcontrib>LAND, MARKUS</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Glasgow mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KASPROWSKI, DANIEL</au><au>LAND, MARKUS</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TOPOLOGICAL 4-MANIFOLDS WITH 4-DIMENSIONAL FUNDAMENTAL GROUP</atitle><jtitle>Glasgow mathematical journal</jtitle><addtitle>Glasgow Math. J</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>64</volume><issue>2</issue><spage>454</spage><epage>461</epage><pages>454-461</pages><issn>0017-0895</issn><eissn>1469-509X</eissn><abstract>Let $\pi$ be a group satisfying the Farrell–Jones conjecture and assume that $B\pi$ is a 4-dimensional Poincaré duality space. We consider topological, closed, connected manifolds with fundamental group $\pi$ whose canonical map to $B\pi$ has degree 1, and show that two such manifolds are s-cobordant if and only if their equivariant intersection forms are isometric and they have the same Kirby–Siebenmann invariant. If $\pi$ is good in the sense of Freedman, it follows that two such manifolds are homeomorphic if and only if they are homotopy equivalent and have the same Kirby–Siebenmann invariant. This shows rigidity in many cases that lie between aspherical 4-manifolds, where rigidity is expected by Borel’s conjecture, and simply connected manifolds where rigidity is a consequence of Freedman’s classification results.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0017089521000215</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-0895 |
ispartof | Glasgow mathematical journal, 2022-05, Vol.64 (2), p.454-461 |
issn | 0017-0895 1469-509X |
language | eng |
recordid | cdi_proquest_journals_2647110330 |
source | Cambridge University Press Journals Complete |
subjects | Classification Invariants Manifolds (mathematics) Rigidity Surgery Topology |
title | TOPOLOGICAL 4-MANIFOLDS WITH 4-DIMENSIONAL FUNDAMENTAL GROUP |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T22%3A37%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TOPOLOGICAL%204-MANIFOLDS%20WITH%204-DIMENSIONAL%20FUNDAMENTAL%20GROUP&rft.jtitle=Glasgow%20mathematical%20journal&rft.au=KASPROWSKI,%20DANIEL&rft.date=2022-05-01&rft.volume=64&rft.issue=2&rft.spage=454&rft.epage=461&rft.pages=454-461&rft.issn=0017-0895&rft.eissn=1469-509X&rft_id=info:doi/10.1017/S0017089521000215&rft_dat=%3Cproquest_cross%3E2647110330%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2647110330&rft_id=info:pmid/&rft_cupid=10_1017_S0017089521000215&rfr_iscdi=true |