Inclusion of multiple cycling of potential in the deep neural network classification of voltammetric reaction mechanisms

The use of deep neural networks (DNNs) for the classification of electrochemical mechanisms using simulated voltammograms with one cycle of potential for training has previously been reported. In this paper, it is shown how valuable additional patterns for mechanism distinction become available when...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Faraday discussions 2022-04, Vol.233, p.44-57
Hauptverfasser: Gundry, Luke, Kennedy, Gareth, Bond, Alan M, Zhang, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 57
container_issue
container_start_page 44
container_title Faraday discussions
container_volume 233
creator Gundry, Luke
Kennedy, Gareth
Bond, Alan M
Zhang, Jie
description The use of deep neural networks (DNNs) for the classification of electrochemical mechanisms using simulated voltammograms with one cycle of potential for training has previously been reported. In this paper, it is shown how valuable additional patterns for mechanism distinction become available when a new DNN is trained simultaneously on images obtained from three cycles of potential using tensor inputs. Significant improvements, relative to the single cycle training, in achieving the correct classification of E, EC 1 st and EC 2 nd mechanisms (E = electron transfer step and C 1 st and C 2 nd are first and second order follow up chemical reactions, respectively) are demonstrated with noisy simulated data for conditions where all mechanisms are close to chemically reversible and hence difficult to distinguish, even by an experienced electrochemist. Challenges anticipated in applying the new DNN to the classification of experimental data are highlighted. Directions for future development are also discussed. Deep neural networks applied to three cycle voltammograms showed significant advantages in classifying difficult simulated E, EC 1 st and EC 2 nd processes.
doi_str_mv 10.1039/d1fd00050k
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2647090076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2647090076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-9c5d6676e8cea2c573c209685e8faabdef139ad7082e49d3fd1241dc187fb3953</originalsourceid><addsrcrecordid>eNpd0cFvFCEUBnBi2thavXjXkHgxJqMwzDBwbFqrTTfxoucJCw9Ly8AITHX_-7LdtU164uV9v7yQfAi9peQzJUx-MdQaQkhPbl-gY8p41_SdFAfbuZcN5x05Qq9yvqmG1_QlOmKdJFQKfoz-XQbtl-xiwNHiafHFzR6w3mjvwu_tbo4FQnHKYxdwuQZsAGYcYEl1FaD8jekWa69ydtZpVfan7qIvapqgJKdxAqUfggn0tQouT_k1OrTKZ3izf0_Qr4uvP8--N6sf3y7PTleNZmwojdS94XzgIDSoVvcD0y2RXPQgrFJrA5YyqcxARAudNMwa2nbUaCoGu2ayZyfo4-7unOKfBXIZJ5c1eK8CxCWPLaeEDF0vRKUfntGbuKRQf1dVNxBZIa_q007pFHNOYMc5uUmlzUjJuO1jPKcX5w99XFX8fn9yWU9gHun_Aip4twMp68f0qVB2D4LtkXE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2647090076</pqid></control><display><type>article</type><title>Inclusion of multiple cycling of potential in the deep neural network classification of voltammetric reaction mechanisms</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Gundry, Luke ; Kennedy, Gareth ; Bond, Alan M ; Zhang, Jie</creator><creatorcontrib>Gundry, Luke ; Kennedy, Gareth ; Bond, Alan M ; Zhang, Jie</creatorcontrib><description>The use of deep neural networks (DNNs) for the classification of electrochemical mechanisms using simulated voltammograms with one cycle of potential for training has previously been reported. In this paper, it is shown how valuable additional patterns for mechanism distinction become available when a new DNN is trained simultaneously on images obtained from three cycles of potential using tensor inputs. Significant improvements, relative to the single cycle training, in achieving the correct classification of E, EC 1 st and EC 2 nd mechanisms (E = electron transfer step and C 1 st and C 2 nd are first and second order follow up chemical reactions, respectively) are demonstrated with noisy simulated data for conditions where all mechanisms are close to chemically reversible and hence difficult to distinguish, even by an experienced electrochemist. Challenges anticipated in applying the new DNN to the classification of experimental data are highlighted. Directions for future development are also discussed. Deep neural networks applied to three cycle voltammograms showed significant advantages in classifying difficult simulated E, EC 1 st and EC 2 nd processes.</description><identifier>ISSN: 1359-6640</identifier><identifier>EISSN: 1364-5498</identifier><identifier>DOI: 10.1039/d1fd00050k</identifier><identifier>PMID: 34901986</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Artificial neural networks ; Chemical reactions ; Classification ; Electron transfer ; Neural networks ; Neural Networks, Computer ; Reaction mechanisms ; Tensors ; Training</subject><ispartof>Faraday discussions, 2022-04, Vol.233, p.44-57</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-9c5d6676e8cea2c573c209685e8faabdef139ad7082e49d3fd1241dc187fb3953</citedby><cites>FETCH-LOGICAL-c337t-9c5d6676e8cea2c573c209685e8faabdef139ad7082e49d3fd1241dc187fb3953</cites><orcidid>0000-0003-2493-5209 ; 0000-0002-2094-6472 ; 0000-0002-1113-5205</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34901986$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gundry, Luke</creatorcontrib><creatorcontrib>Kennedy, Gareth</creatorcontrib><creatorcontrib>Bond, Alan M</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><title>Inclusion of multiple cycling of potential in the deep neural network classification of voltammetric reaction mechanisms</title><title>Faraday discussions</title><addtitle>Faraday Discuss</addtitle><description>The use of deep neural networks (DNNs) for the classification of electrochemical mechanisms using simulated voltammograms with one cycle of potential for training has previously been reported. In this paper, it is shown how valuable additional patterns for mechanism distinction become available when a new DNN is trained simultaneously on images obtained from three cycles of potential using tensor inputs. Significant improvements, relative to the single cycle training, in achieving the correct classification of E, EC 1 st and EC 2 nd mechanisms (E = electron transfer step and C 1 st and C 2 nd are first and second order follow up chemical reactions, respectively) are demonstrated with noisy simulated data for conditions where all mechanisms are close to chemically reversible and hence difficult to distinguish, even by an experienced electrochemist. Challenges anticipated in applying the new DNN to the classification of experimental data are highlighted. Directions for future development are also discussed. Deep neural networks applied to three cycle voltammograms showed significant advantages in classifying difficult simulated E, EC 1 st and EC 2 nd processes.</description><subject>Artificial neural networks</subject><subject>Chemical reactions</subject><subject>Classification</subject><subject>Electron transfer</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Reaction mechanisms</subject><subject>Tensors</subject><subject>Training</subject><issn>1359-6640</issn><issn>1364-5498</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0cFvFCEUBnBi2thavXjXkHgxJqMwzDBwbFqrTTfxoucJCw9Ly8AITHX_-7LdtU164uV9v7yQfAi9peQzJUx-MdQaQkhPbl-gY8p41_SdFAfbuZcN5x05Qq9yvqmG1_QlOmKdJFQKfoz-XQbtl-xiwNHiafHFzR6w3mjvwu_tbo4FQnHKYxdwuQZsAGYcYEl1FaD8jekWa69ydtZpVfan7qIvapqgJKdxAqUfggn0tQouT_k1OrTKZ3izf0_Qr4uvP8--N6sf3y7PTleNZmwojdS94XzgIDSoVvcD0y2RXPQgrFJrA5YyqcxARAudNMwa2nbUaCoGu2ayZyfo4-7unOKfBXIZJ5c1eK8CxCWPLaeEDF0vRKUfntGbuKRQf1dVNxBZIa_q007pFHNOYMc5uUmlzUjJuO1jPKcX5w99XFX8fn9yWU9gHun_Aip4twMp68f0qVB2D4LtkXE</recordid><startdate>20220405</startdate><enddate>20220405</enddate><creator>Gundry, Luke</creator><creator>Kennedy, Gareth</creator><creator>Bond, Alan M</creator><creator>Zhang, Jie</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2493-5209</orcidid><orcidid>https://orcid.org/0000-0002-2094-6472</orcidid><orcidid>https://orcid.org/0000-0002-1113-5205</orcidid></search><sort><creationdate>20220405</creationdate><title>Inclusion of multiple cycling of potential in the deep neural network classification of voltammetric reaction mechanisms</title><author>Gundry, Luke ; Kennedy, Gareth ; Bond, Alan M ; Zhang, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-9c5d6676e8cea2c573c209685e8faabdef139ad7082e49d3fd1241dc187fb3953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Chemical reactions</topic><topic>Classification</topic><topic>Electron transfer</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Reaction mechanisms</topic><topic>Tensors</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gundry, Luke</creatorcontrib><creatorcontrib>Kennedy, Gareth</creatorcontrib><creatorcontrib>Bond, Alan M</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Faraday discussions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gundry, Luke</au><au>Kennedy, Gareth</au><au>Bond, Alan M</au><au>Zhang, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inclusion of multiple cycling of potential in the deep neural network classification of voltammetric reaction mechanisms</atitle><jtitle>Faraday discussions</jtitle><addtitle>Faraday Discuss</addtitle><date>2022-04-05</date><risdate>2022</risdate><volume>233</volume><spage>44</spage><epage>57</epage><pages>44-57</pages><issn>1359-6640</issn><eissn>1364-5498</eissn><abstract>The use of deep neural networks (DNNs) for the classification of electrochemical mechanisms using simulated voltammograms with one cycle of potential for training has previously been reported. In this paper, it is shown how valuable additional patterns for mechanism distinction become available when a new DNN is trained simultaneously on images obtained from three cycles of potential using tensor inputs. Significant improvements, relative to the single cycle training, in achieving the correct classification of E, EC 1 st and EC 2 nd mechanisms (E = electron transfer step and C 1 st and C 2 nd are first and second order follow up chemical reactions, respectively) are demonstrated with noisy simulated data for conditions where all mechanisms are close to chemically reversible and hence difficult to distinguish, even by an experienced electrochemist. Challenges anticipated in applying the new DNN to the classification of experimental data are highlighted. Directions for future development are also discussed. Deep neural networks applied to three cycle voltammograms showed significant advantages in classifying difficult simulated E, EC 1 st and EC 2 nd processes.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>34901986</pmid><doi>10.1039/d1fd00050k</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2493-5209</orcidid><orcidid>https://orcid.org/0000-0002-2094-6472</orcidid><orcidid>https://orcid.org/0000-0002-1113-5205</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1359-6640
ispartof Faraday discussions, 2022-04, Vol.233, p.44-57
issn 1359-6640
1364-5498
language eng
recordid cdi_proquest_journals_2647090076
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Artificial neural networks
Chemical reactions
Classification
Electron transfer
Neural networks
Neural Networks, Computer
Reaction mechanisms
Tensors
Training
title Inclusion of multiple cycling of potential in the deep neural network classification of voltammetric reaction mechanisms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A03%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inclusion%20of%20multiple%20cycling%20of%20potential%20in%20the%20deep%20neural%20network%20classification%20of%20voltammetric%20reaction%20mechanisms&rft.jtitle=Faraday%20discussions&rft.au=Gundry,%20Luke&rft.date=2022-04-05&rft.volume=233&rft.spage=44&rft.epage=57&rft.pages=44-57&rft.issn=1359-6640&rft.eissn=1364-5498&rft_id=info:doi/10.1039/d1fd00050k&rft_dat=%3Cproquest_cross%3E2647090076%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2647090076&rft_id=info:pmid/34901986&rfr_iscdi=true