Inclusion of multiple cycling of potential in the deep neural network classification of voltammetric reaction mechanisms
The use of deep neural networks (DNNs) for the classification of electrochemical mechanisms using simulated voltammograms with one cycle of potential for training has previously been reported. In this paper, it is shown how valuable additional patterns for mechanism distinction become available when...
Gespeichert in:
Veröffentlicht in: | Faraday discussions 2022-04, Vol.233, p.44-57 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 57 |
---|---|
container_issue | |
container_start_page | 44 |
container_title | Faraday discussions |
container_volume | 233 |
creator | Gundry, Luke Kennedy, Gareth Bond, Alan M Zhang, Jie |
description | The use of deep neural networks (DNNs) for the classification of electrochemical mechanisms using simulated voltammograms with one cycle of potential for training has previously been reported. In this paper, it is shown how valuable additional patterns for mechanism distinction become available when a new DNN is trained simultaneously on images obtained from three cycles of potential using tensor inputs. Significant improvements, relative to the single cycle training, in achieving the correct classification of E, EC
1
st
and EC
2
nd
mechanisms (E = electron transfer step and C
1
st
and C
2
nd
are first and second order follow up chemical reactions, respectively) are demonstrated with noisy simulated data for conditions where all mechanisms are close to chemically reversible and hence difficult to distinguish, even by an experienced electrochemist. Challenges anticipated in applying the new DNN to the classification of experimental data are highlighted. Directions for future development are also discussed.
Deep neural networks applied to three cycle voltammograms showed significant advantages in classifying difficult simulated E, EC
1
st
and EC
2
nd
processes. |
doi_str_mv | 10.1039/d1fd00050k |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2647090076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2647090076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-9c5d6676e8cea2c573c209685e8faabdef139ad7082e49d3fd1241dc187fb3953</originalsourceid><addsrcrecordid>eNpd0cFvFCEUBnBi2thavXjXkHgxJqMwzDBwbFqrTTfxoucJCw9Ly8AITHX_-7LdtU164uV9v7yQfAi9peQzJUx-MdQaQkhPbl-gY8p41_SdFAfbuZcN5x05Qq9yvqmG1_QlOmKdJFQKfoz-XQbtl-xiwNHiafHFzR6w3mjvwu_tbo4FQnHKYxdwuQZsAGYcYEl1FaD8jekWa69ydtZpVfan7qIvapqgJKdxAqUfggn0tQouT_k1OrTKZ3izf0_Qr4uvP8--N6sf3y7PTleNZmwojdS94XzgIDSoVvcD0y2RXPQgrFJrA5YyqcxARAudNMwa2nbUaCoGu2ayZyfo4-7unOKfBXIZJ5c1eK8CxCWPLaeEDF0vRKUfntGbuKRQf1dVNxBZIa_q007pFHNOYMc5uUmlzUjJuO1jPKcX5w99XFX8fn9yWU9gHun_Aip4twMp68f0qVB2D4LtkXE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2647090076</pqid></control><display><type>article</type><title>Inclusion of multiple cycling of potential in the deep neural network classification of voltammetric reaction mechanisms</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Gundry, Luke ; Kennedy, Gareth ; Bond, Alan M ; Zhang, Jie</creator><creatorcontrib>Gundry, Luke ; Kennedy, Gareth ; Bond, Alan M ; Zhang, Jie</creatorcontrib><description>The use of deep neural networks (DNNs) for the classification of electrochemical mechanisms using simulated voltammograms with one cycle of potential for training has previously been reported. In this paper, it is shown how valuable additional patterns for mechanism distinction become available when a new DNN is trained simultaneously on images obtained from three cycles of potential using tensor inputs. Significant improvements, relative to the single cycle training, in achieving the correct classification of E, EC
1
st
and EC
2
nd
mechanisms (E = electron transfer step and C
1
st
and C
2
nd
are first and second order follow up chemical reactions, respectively) are demonstrated with noisy simulated data for conditions where all mechanisms are close to chemically reversible and hence difficult to distinguish, even by an experienced electrochemist. Challenges anticipated in applying the new DNN to the classification of experimental data are highlighted. Directions for future development are also discussed.
Deep neural networks applied to three cycle voltammograms showed significant advantages in classifying difficult simulated E, EC
1
st
and EC
2
nd
processes.</description><identifier>ISSN: 1359-6640</identifier><identifier>EISSN: 1364-5498</identifier><identifier>DOI: 10.1039/d1fd00050k</identifier><identifier>PMID: 34901986</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Artificial neural networks ; Chemical reactions ; Classification ; Electron transfer ; Neural networks ; Neural Networks, Computer ; Reaction mechanisms ; Tensors ; Training</subject><ispartof>Faraday discussions, 2022-04, Vol.233, p.44-57</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-9c5d6676e8cea2c573c209685e8faabdef139ad7082e49d3fd1241dc187fb3953</citedby><cites>FETCH-LOGICAL-c337t-9c5d6676e8cea2c573c209685e8faabdef139ad7082e49d3fd1241dc187fb3953</cites><orcidid>0000-0003-2493-5209 ; 0000-0002-2094-6472 ; 0000-0002-1113-5205</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34901986$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gundry, Luke</creatorcontrib><creatorcontrib>Kennedy, Gareth</creatorcontrib><creatorcontrib>Bond, Alan M</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><title>Inclusion of multiple cycling of potential in the deep neural network classification of voltammetric reaction mechanisms</title><title>Faraday discussions</title><addtitle>Faraday Discuss</addtitle><description>The use of deep neural networks (DNNs) for the classification of electrochemical mechanisms using simulated voltammograms with one cycle of potential for training has previously been reported. In this paper, it is shown how valuable additional patterns for mechanism distinction become available when a new DNN is trained simultaneously on images obtained from three cycles of potential using tensor inputs. Significant improvements, relative to the single cycle training, in achieving the correct classification of E, EC
1
st
and EC
2
nd
mechanisms (E = electron transfer step and C
1
st
and C
2
nd
are first and second order follow up chemical reactions, respectively) are demonstrated with noisy simulated data for conditions where all mechanisms are close to chemically reversible and hence difficult to distinguish, even by an experienced electrochemist. Challenges anticipated in applying the new DNN to the classification of experimental data are highlighted. Directions for future development are also discussed.
Deep neural networks applied to three cycle voltammograms showed significant advantages in classifying difficult simulated E, EC
1
st
and EC
2
nd
processes.</description><subject>Artificial neural networks</subject><subject>Chemical reactions</subject><subject>Classification</subject><subject>Electron transfer</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Reaction mechanisms</subject><subject>Tensors</subject><subject>Training</subject><issn>1359-6640</issn><issn>1364-5498</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0cFvFCEUBnBi2thavXjXkHgxJqMwzDBwbFqrTTfxoucJCw9Ly8AITHX_-7LdtU164uV9v7yQfAi9peQzJUx-MdQaQkhPbl-gY8p41_SdFAfbuZcN5x05Qq9yvqmG1_QlOmKdJFQKfoz-XQbtl-xiwNHiafHFzR6w3mjvwu_tbo4FQnHKYxdwuQZsAGYcYEl1FaD8jekWa69ydtZpVfan7qIvapqgJKdxAqUfggn0tQouT_k1OrTKZ3izf0_Qr4uvP8--N6sf3y7PTleNZmwojdS94XzgIDSoVvcD0y2RXPQgrFJrA5YyqcxARAudNMwa2nbUaCoGu2ayZyfo4-7unOKfBXIZJ5c1eK8CxCWPLaeEDF0vRKUfntGbuKRQf1dVNxBZIa_q007pFHNOYMc5uUmlzUjJuO1jPKcX5w99XFX8fn9yWU9gHun_Aip4twMp68f0qVB2D4LtkXE</recordid><startdate>20220405</startdate><enddate>20220405</enddate><creator>Gundry, Luke</creator><creator>Kennedy, Gareth</creator><creator>Bond, Alan M</creator><creator>Zhang, Jie</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2493-5209</orcidid><orcidid>https://orcid.org/0000-0002-2094-6472</orcidid><orcidid>https://orcid.org/0000-0002-1113-5205</orcidid></search><sort><creationdate>20220405</creationdate><title>Inclusion of multiple cycling of potential in the deep neural network classification of voltammetric reaction mechanisms</title><author>Gundry, Luke ; Kennedy, Gareth ; Bond, Alan M ; Zhang, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-9c5d6676e8cea2c573c209685e8faabdef139ad7082e49d3fd1241dc187fb3953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Chemical reactions</topic><topic>Classification</topic><topic>Electron transfer</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Reaction mechanisms</topic><topic>Tensors</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gundry, Luke</creatorcontrib><creatorcontrib>Kennedy, Gareth</creatorcontrib><creatorcontrib>Bond, Alan M</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Faraday discussions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gundry, Luke</au><au>Kennedy, Gareth</au><au>Bond, Alan M</au><au>Zhang, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inclusion of multiple cycling of potential in the deep neural network classification of voltammetric reaction mechanisms</atitle><jtitle>Faraday discussions</jtitle><addtitle>Faraday Discuss</addtitle><date>2022-04-05</date><risdate>2022</risdate><volume>233</volume><spage>44</spage><epage>57</epage><pages>44-57</pages><issn>1359-6640</issn><eissn>1364-5498</eissn><abstract>The use of deep neural networks (DNNs) for the classification of electrochemical mechanisms using simulated voltammograms with one cycle of potential for training has previously been reported. In this paper, it is shown how valuable additional patterns for mechanism distinction become available when a new DNN is trained simultaneously on images obtained from three cycles of potential using tensor inputs. Significant improvements, relative to the single cycle training, in achieving the correct classification of E, EC
1
st
and EC
2
nd
mechanisms (E = electron transfer step and C
1
st
and C
2
nd
are first and second order follow up chemical reactions, respectively) are demonstrated with noisy simulated data for conditions where all mechanisms are close to chemically reversible and hence difficult to distinguish, even by an experienced electrochemist. Challenges anticipated in applying the new DNN to the classification of experimental data are highlighted. Directions for future development are also discussed.
Deep neural networks applied to three cycle voltammograms showed significant advantages in classifying difficult simulated E, EC
1
st
and EC
2
nd
processes.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>34901986</pmid><doi>10.1039/d1fd00050k</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2493-5209</orcidid><orcidid>https://orcid.org/0000-0002-2094-6472</orcidid><orcidid>https://orcid.org/0000-0002-1113-5205</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6640 |
ispartof | Faraday discussions, 2022-04, Vol.233, p.44-57 |
issn | 1359-6640 1364-5498 |
language | eng |
recordid | cdi_proquest_journals_2647090076 |
source | MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Artificial neural networks Chemical reactions Classification Electron transfer Neural networks Neural Networks, Computer Reaction mechanisms Tensors Training |
title | Inclusion of multiple cycling of potential in the deep neural network classification of voltammetric reaction mechanisms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A03%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inclusion%20of%20multiple%20cycling%20of%20potential%20in%20the%20deep%20neural%20network%20classification%20of%20voltammetric%20reaction%20mechanisms&rft.jtitle=Faraday%20discussions&rft.au=Gundry,%20Luke&rft.date=2022-04-05&rft.volume=233&rft.spage=44&rft.epage=57&rft.pages=44-57&rft.issn=1359-6640&rft.eissn=1364-5498&rft_id=info:doi/10.1039/d1fd00050k&rft_dat=%3Cproquest_cross%3E2647090076%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2647090076&rft_id=info:pmid/34901986&rfr_iscdi=true |