Canted Antiferromagnetic phases in the layered candidate Weyl material EuMnSb\(_2\)

EuMnSb\(_2\) is a candidate topological material which can be tuned towards a Weyl semimetal, but there are differing reports for its antiferromagnetic (AFM) phases. The coupling of bands dominated by pure Sb layers hosting topological fermions to Mn and Eu magnetic states provides a potential path...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-07
Hauptverfasser: Wilde, J M, Riberolles, S X M, Das, Atreyee, Liu, Y, Heitmann, T W, Wang, X, Straszheim, W E, Bud'ko, S L, Canfield, P C, Kreyssig, A, McQueeney, R J, Ryan, D H, Ueland, B G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Wilde, J M
Riberolles, S X M
Das, Atreyee
Liu, Y
Heitmann, T W
Wang, X
Straszheim, W E
Bud'ko, S L
Canfield, P C
Kreyssig, A
McQueeney, R J
Ryan, D H
Ueland, B G
description EuMnSb\(_2\) is a candidate topological material which can be tuned towards a Weyl semimetal, but there are differing reports for its antiferromagnetic (AFM) phases. The coupling of bands dominated by pure Sb layers hosting topological fermions to Mn and Eu magnetic states provides a potential path to tune the topological properties. We present a detailed analysis of the magnetic structure on three AFM phases based on single-crystal neutron diffraction, magnetization, and heat capacity data as well as polycrystalline \(^{151}\)Eu M\"ossbauer data. The Mn magnetic sublattice orders into a C-type AFM structure below \(323(1)\)~K with the ordered Mn magnetic moment \(\mu_{\text{Mn}}\) lying perpendicular to the layers. AFM ordering of the Eu sublattice occurs below \(23(1)\)~K with the ordered Eu magnetic moment \(\mu_{\text{Eu}}\) canted away from the layer normal and \(\mu_{\text{Mn}}\) retaining its higher-temperature order. \(\mu_{\text{Eu}}\) is ferromagnetically aligned within each Eu layer but exhibits a complicated AFM layer stacking. Both of these higher-temperature phases are described by magnetic space group (MSG) \(Pn^{\prime}m^{\prime}a^{\prime}\) with the chemical and magnetic unit cells having the same dimensions. Cooling below \(=9(1)\)~K reveals a third AFM phase where \(\mu_{\text{Mn}}\) remains unchanged but \(\mu_{\text{Eu}}\) develops an additional in-plane canting. This phase has MSG \(P11\frac{2_1}{a^{\prime}}\). We additionally find evidence of short-range magnetic correlations associated with the Eu between \(12~\text{K} \lesssim T \lesssim 30~\text{K}\). Using the determined magnetic structures, we postulate the signs of nearest-neighbor intralayer and interlayer exchange constants and the magnetic anisotropy within a general Heisenberg-model. We then discuss implications of the various AFM states in EuMnSb\(_2\) and its topological properties.
doi_str_mv 10.48550/arxiv.2204.00761
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2647059256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2647059256</sourcerecordid><originalsourceid>FETCH-proquest_journals_26470592563</originalsourceid><addsrcrecordid>eNqNisEOwUAUADcSCcEHuG3iwkG9vnZbjiLExYnERdI8-rBSW3a3wt_rwQc4zSQzQvRDCOKpUjAh-9avABHiACBNwoZoYxSF42mM2BI9524AgEmKSkVtsV2Q8ZzLufH6zNaWd7oY9vokH1dy7KQ20l9ZFvRhW38nMrnOybPc86eQ99qspkIuq43ZHg_DDA-jrmieqXDc-7EjBqvlbrEeP2z5rNj57FZW1tQpwyROQc1QJdF_1xdE1kWR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2647059256</pqid></control><display><type>article</type><title>Canted Antiferromagnetic phases in the layered candidate Weyl material EuMnSb\(_2\)</title><source>Free eJournals</source><creator>Wilde, J M ; Riberolles, S X M ; Das, Atreyee ; Liu, Y ; Heitmann, T W ; Wang, X ; Straszheim, W E ; Bud'ko, S L ; Canfield, P C ; Kreyssig, A ; McQueeney, R J ; Ryan, D H ; Ueland, B G</creator><creatorcontrib>Wilde, J M ; Riberolles, S X M ; Das, Atreyee ; Liu, Y ; Heitmann, T W ; Wang, X ; Straszheim, W E ; Bud'ko, S L ; Canfield, P C ; Kreyssig, A ; McQueeney, R J ; Ryan, D H ; Ueland, B G</creatorcontrib><description>EuMnSb\(_2\) is a candidate topological material which can be tuned towards a Weyl semimetal, but there are differing reports for its antiferromagnetic (AFM) phases. The coupling of bands dominated by pure Sb layers hosting topological fermions to Mn and Eu magnetic states provides a potential path to tune the topological properties. We present a detailed analysis of the magnetic structure on three AFM phases based on single-crystal neutron diffraction, magnetization, and heat capacity data as well as polycrystalline \(^{151}\)Eu M\"ossbauer data. The Mn magnetic sublattice orders into a C-type AFM structure below \(323(1)\)~K with the ordered Mn magnetic moment \(\mu_{\text{Mn}}\) lying perpendicular to the layers. AFM ordering of the Eu sublattice occurs below \(23(1)\)~K with the ordered Eu magnetic moment \(\mu_{\text{Eu}}\) canted away from the layer normal and \(\mu_{\text{Mn}}\) retaining its higher-temperature order. \(\mu_{\text{Eu}}\) is ferromagnetically aligned within each Eu layer but exhibits a complicated AFM layer stacking. Both of these higher-temperature phases are described by magnetic space group (MSG) \(Pn^{\prime}m^{\prime}a^{\prime}\) with the chemical and magnetic unit cells having the same dimensions. Cooling below \(=9(1)\)~K reveals a third AFM phase where \(\mu_{\text{Mn}}\) remains unchanged but \(\mu_{\text{Eu}}\) develops an additional in-plane canting. This phase has MSG \(P11\frac{2_1}{a^{\prime}}\). We additionally find evidence of short-range magnetic correlations associated with the Eu between \(12~\text{K} \lesssim T \lesssim 30~\text{K}\). Using the determined magnetic structures, we postulate the signs of nearest-neighbor intralayer and interlayer exchange constants and the magnetic anisotropy within a general Heisenberg-model. We then discuss implications of the various AFM states in EuMnSb\(_2\) and its topological properties.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2204.00761</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Antiferromagnetism ; Crystal structure ; Fermions ; Ferromagnetism ; Filing ; Interlayers ; Magnetic anisotropy ; Magnetic moments ; Magnetic properties ; Magnetic structure ; Neutron diffraction ; Phases ; Single crystals ; Topology</subject><ispartof>arXiv.org, 2022-07</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780,27902</link.rule.ids></links><search><creatorcontrib>Wilde, J M</creatorcontrib><creatorcontrib>Riberolles, S X M</creatorcontrib><creatorcontrib>Das, Atreyee</creatorcontrib><creatorcontrib>Liu, Y</creatorcontrib><creatorcontrib>Heitmann, T W</creatorcontrib><creatorcontrib>Wang, X</creatorcontrib><creatorcontrib>Straszheim, W E</creatorcontrib><creatorcontrib>Bud'ko, S L</creatorcontrib><creatorcontrib>Canfield, P C</creatorcontrib><creatorcontrib>Kreyssig, A</creatorcontrib><creatorcontrib>McQueeney, R J</creatorcontrib><creatorcontrib>Ryan, D H</creatorcontrib><creatorcontrib>Ueland, B G</creatorcontrib><title>Canted Antiferromagnetic phases in the layered candidate Weyl material EuMnSb\(_2\)</title><title>arXiv.org</title><description>EuMnSb\(_2\) is a candidate topological material which can be tuned towards a Weyl semimetal, but there are differing reports for its antiferromagnetic (AFM) phases. The coupling of bands dominated by pure Sb layers hosting topological fermions to Mn and Eu magnetic states provides a potential path to tune the topological properties. We present a detailed analysis of the magnetic structure on three AFM phases based on single-crystal neutron diffraction, magnetization, and heat capacity data as well as polycrystalline \(^{151}\)Eu M\"ossbauer data. The Mn magnetic sublattice orders into a C-type AFM structure below \(323(1)\)~K with the ordered Mn magnetic moment \(\mu_{\text{Mn}}\) lying perpendicular to the layers. AFM ordering of the Eu sublattice occurs below \(23(1)\)~K with the ordered Eu magnetic moment \(\mu_{\text{Eu}}\) canted away from the layer normal and \(\mu_{\text{Mn}}\) retaining its higher-temperature order. \(\mu_{\text{Eu}}\) is ferromagnetically aligned within each Eu layer but exhibits a complicated AFM layer stacking. Both of these higher-temperature phases are described by magnetic space group (MSG) \(Pn^{\prime}m^{\prime}a^{\prime}\) with the chemical and magnetic unit cells having the same dimensions. Cooling below \(=9(1)\)~K reveals a third AFM phase where \(\mu_{\text{Mn}}\) remains unchanged but \(\mu_{\text{Eu}}\) develops an additional in-plane canting. This phase has MSG \(P11\frac{2_1}{a^{\prime}}\). We additionally find evidence of short-range magnetic correlations associated with the Eu between \(12~\text{K} \lesssim T \lesssim 30~\text{K}\). Using the determined magnetic structures, we postulate the signs of nearest-neighbor intralayer and interlayer exchange constants and the magnetic anisotropy within a general Heisenberg-model. We then discuss implications of the various AFM states in EuMnSb\(_2\) and its topological properties.</description><subject>Antiferromagnetism</subject><subject>Crystal structure</subject><subject>Fermions</subject><subject>Ferromagnetism</subject><subject>Filing</subject><subject>Interlayers</subject><subject>Magnetic anisotropy</subject><subject>Magnetic moments</subject><subject>Magnetic properties</subject><subject>Magnetic structure</subject><subject>Neutron diffraction</subject><subject>Phases</subject><subject>Single crystals</subject><subject>Topology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNisEOwUAUADcSCcEHuG3iwkG9vnZbjiLExYnERdI8-rBSW3a3wt_rwQc4zSQzQvRDCOKpUjAh-9avABHiACBNwoZoYxSF42mM2BI9524AgEmKSkVtsV2Q8ZzLufH6zNaWd7oY9vokH1dy7KQ20l9ZFvRhW38nMrnOybPc86eQ99qspkIuq43ZHg_DDA-jrmieqXDc-7EjBqvlbrEeP2z5rNj57FZW1tQpwyROQc1QJdF_1xdE1kWR</recordid><startdate>20220728</startdate><enddate>20220728</enddate><creator>Wilde, J M</creator><creator>Riberolles, S X M</creator><creator>Das, Atreyee</creator><creator>Liu, Y</creator><creator>Heitmann, T W</creator><creator>Wang, X</creator><creator>Straszheim, W E</creator><creator>Bud'ko, S L</creator><creator>Canfield, P C</creator><creator>Kreyssig, A</creator><creator>McQueeney, R J</creator><creator>Ryan, D H</creator><creator>Ueland, B G</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220728</creationdate><title>Canted Antiferromagnetic phases in the layered candidate Weyl material EuMnSb\(_2\)</title><author>Wilde, J M ; Riberolles, S X M ; Das, Atreyee ; Liu, Y ; Heitmann, T W ; Wang, X ; Straszheim, W E ; Bud'ko, S L ; Canfield, P C ; Kreyssig, A ; McQueeney, R J ; Ryan, D H ; Ueland, B G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26470592563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antiferromagnetism</topic><topic>Crystal structure</topic><topic>Fermions</topic><topic>Ferromagnetism</topic><topic>Filing</topic><topic>Interlayers</topic><topic>Magnetic anisotropy</topic><topic>Magnetic moments</topic><topic>Magnetic properties</topic><topic>Magnetic structure</topic><topic>Neutron diffraction</topic><topic>Phases</topic><topic>Single crystals</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Wilde, J M</creatorcontrib><creatorcontrib>Riberolles, S X M</creatorcontrib><creatorcontrib>Das, Atreyee</creatorcontrib><creatorcontrib>Liu, Y</creatorcontrib><creatorcontrib>Heitmann, T W</creatorcontrib><creatorcontrib>Wang, X</creatorcontrib><creatorcontrib>Straszheim, W E</creatorcontrib><creatorcontrib>Bud'ko, S L</creatorcontrib><creatorcontrib>Canfield, P C</creatorcontrib><creatorcontrib>Kreyssig, A</creatorcontrib><creatorcontrib>McQueeney, R J</creatorcontrib><creatorcontrib>Ryan, D H</creatorcontrib><creatorcontrib>Ueland, B G</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilde, J M</au><au>Riberolles, S X M</au><au>Das, Atreyee</au><au>Liu, Y</au><au>Heitmann, T W</au><au>Wang, X</au><au>Straszheim, W E</au><au>Bud'ko, S L</au><au>Canfield, P C</au><au>Kreyssig, A</au><au>McQueeney, R J</au><au>Ryan, D H</au><au>Ueland, B G</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Canted Antiferromagnetic phases in the layered candidate Weyl material EuMnSb\(_2\)</atitle><jtitle>arXiv.org</jtitle><date>2022-07-28</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>EuMnSb\(_2\) is a candidate topological material which can be tuned towards a Weyl semimetal, but there are differing reports for its antiferromagnetic (AFM) phases. The coupling of bands dominated by pure Sb layers hosting topological fermions to Mn and Eu magnetic states provides a potential path to tune the topological properties. We present a detailed analysis of the magnetic structure on three AFM phases based on single-crystal neutron diffraction, magnetization, and heat capacity data as well as polycrystalline \(^{151}\)Eu M\"ossbauer data. The Mn magnetic sublattice orders into a C-type AFM structure below \(323(1)\)~K with the ordered Mn magnetic moment \(\mu_{\text{Mn}}\) lying perpendicular to the layers. AFM ordering of the Eu sublattice occurs below \(23(1)\)~K with the ordered Eu magnetic moment \(\mu_{\text{Eu}}\) canted away from the layer normal and \(\mu_{\text{Mn}}\) retaining its higher-temperature order. \(\mu_{\text{Eu}}\) is ferromagnetically aligned within each Eu layer but exhibits a complicated AFM layer stacking. Both of these higher-temperature phases are described by magnetic space group (MSG) \(Pn^{\prime}m^{\prime}a^{\prime}\) with the chemical and magnetic unit cells having the same dimensions. Cooling below \(=9(1)\)~K reveals a third AFM phase where \(\mu_{\text{Mn}}\) remains unchanged but \(\mu_{\text{Eu}}\) develops an additional in-plane canting. This phase has MSG \(P11\frac{2_1}{a^{\prime}}\). We additionally find evidence of short-range magnetic correlations associated with the Eu between \(12~\text{K} \lesssim T \lesssim 30~\text{K}\). Using the determined magnetic structures, we postulate the signs of nearest-neighbor intralayer and interlayer exchange constants and the magnetic anisotropy within a general Heisenberg-model. We then discuss implications of the various AFM states in EuMnSb\(_2\) and its topological properties.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2204.00761</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2647059256
source Free eJournals
subjects Antiferromagnetism
Crystal structure
Fermions
Ferromagnetism
Filing
Interlayers
Magnetic anisotropy
Magnetic moments
Magnetic properties
Magnetic structure
Neutron diffraction
Phases
Single crystals
Topology
title Canted Antiferromagnetic phases in the layered candidate Weyl material EuMnSb\(_2\)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T04%3A23%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Canted%20Antiferromagnetic%20phases%20in%20the%20layered%20candidate%20Weyl%20material%20EuMnSb%5C(_2%5C)&rft.jtitle=arXiv.org&rft.au=Wilde,%20J%20M&rft.date=2022-07-28&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2204.00761&rft_dat=%3Cproquest%3E2647059256%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2647059256&rft_id=info:pmid/&rfr_iscdi=true