Dual-active sites design of Snx-Sby-O-GO nanosheets for enhancing electrochemical CO2 reduction via Sb-accelerating water activation

Electrochemical CO2 reduction reaction (eCO2RR) is a promising approach for the sustainable development of energy and environment, yet the control over selectivity of eCO2RR is challenging and entails intelligent active site design. Herein, we firstly propose dual-active sites design of Snx-Sby-O-GO...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied catalysis. B, Environmental Environmental, 2022-06, Vol.307, p.121171, Article 121171
Hauptverfasser: He, Haichuan, Wu, Jian, Yu, Xiao, Xia, Dan, Wang, Yan, Chen, Fei, Wang, Liqiang, Wu, Linlin, Huang, Jianhan, Zhao, Ning, Deng, Liu, Liu, You-Nian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 121171
container_title Applied catalysis. B, Environmental
container_volume 307
creator He, Haichuan
Wu, Jian
Yu, Xiao
Xia, Dan
Wang, Yan
Chen, Fei
Wang, Liqiang
Wu, Linlin
Huang, Jianhan
Zhao, Ning
Deng, Liu
Liu, You-Nian
description Electrochemical CO2 reduction reaction (eCO2RR) is a promising approach for the sustainable development of energy and environment, yet the control over selectivity of eCO2RR is challenging and entails intelligent active site design. Herein, we firstly propose dual-active sites design of Snx-Sby-O-GO nanosheets (NSs) for controlling the reaction pathways. The Snx-Sby-O-GO NSs catalyst possesses large-size ultrathin structure and controllable Sn/Sb ratio, strengthening the interaction at the active site with OCHO* intermediate. The optimized Sn7-Sb3-O-GO NSs exhibit a HCOOH selectivity of 96.5% and partial current density of − 21.6 mA cm−2. The experiments and theory calculations show that the introduction of Sb secondary active site can accelerate water activation for forming unique *H species and the binding strength of OCHO* key intermediates, thereby enhancing the HCOOH selectivity in eCO2RR. This work lends credence to the novel metal-metal dual-active sites design strategy for eCO2RR sustainable energy conversion. An ultrathin Sn7-Sb3-O-GO electrocatalyst with dual active sites exhibits a high HCOOH selectivity of 96.5% and partial current density of − 21.6 mA cm−2 for eCO2RR. [Display omitted] •A metal-metal dual active sites strategy for eCO2RR sustainable energy conversion is proposed.•Snx-Sby-O-GO catalysts possess large-size 2D structure and controllable Sn/Sb ratio.•The introduction of Sb site can facilitate HCOOH production via accelerating H2O activation.•Sn7-Sb3-O-GO exhibits a HCOOH selectivity of 96.5% and partial current density of − 21.6 mA cm−2.
doi_str_mv 10.1016/j.apcatb.2022.121171
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2646977331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926337322001114</els_id><sourcerecordid>2646977331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-7a1642e27d08dcb8741269f337078554244de651d9c544ba930cb71dfc3b1313</originalsourceid><addsrcrecordid>eNp9kLlOAzEURS0EEmH5AwpL1A7eMp5pkFBYJaQUSW957DeJo2AH2wnQ8-FMGGqq15x7r95B6IrRMaOsulmPzdaa0o455XzMOGOKHaERq5Ugoq7FMRrRhldECCVO0VnOa0opF7weoe_7ndkQY4vfA86-QMYOsl8GHDs8D59k3n6RGXma4WBCzCuAknEXE4awMsH6sMSwAVtStCt489Zs8HTGcQK36ztjwHtv8LztF2zPJVMOiQ9TIOHfUXOALtBJZzYZLv_uOVo8Piymz-R19vQyvXslVghZiDKskhy4crR2tq2VZLxquv4rqurJRHIpHVQT5ho7kbI1jaC2Vcx1VrRMMHGOrofabYrvO8hFr-MuhX5R80pWjVLil5IDZVPMOUGnt8m_mfSlGdUH3XqtB936oFsPuvvY7RCD_oG9h6Sz9RAsOJ96P9pF_3_BD2OnipU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646977331</pqid></control><display><type>article</type><title>Dual-active sites design of Snx-Sby-O-GO nanosheets for enhancing electrochemical CO2 reduction via Sb-accelerating water activation</title><source>Elsevier ScienceDirect Journals Complete</source><creator>He, Haichuan ; Wu, Jian ; Yu, Xiao ; Xia, Dan ; Wang, Yan ; Chen, Fei ; Wang, Liqiang ; Wu, Linlin ; Huang, Jianhan ; Zhao, Ning ; Deng, Liu ; Liu, You-Nian</creator><creatorcontrib>He, Haichuan ; Wu, Jian ; Yu, Xiao ; Xia, Dan ; Wang, Yan ; Chen, Fei ; Wang, Liqiang ; Wu, Linlin ; Huang, Jianhan ; Zhao, Ning ; Deng, Liu ; Liu, You-Nian</creatorcontrib><description>Electrochemical CO2 reduction reaction (eCO2RR) is a promising approach for the sustainable development of energy and environment, yet the control over selectivity of eCO2RR is challenging and entails intelligent active site design. Herein, we firstly propose dual-active sites design of Snx-Sby-O-GO nanosheets (NSs) for controlling the reaction pathways. The Snx-Sby-O-GO NSs catalyst possesses large-size ultrathin structure and controllable Sn/Sb ratio, strengthening the interaction at the active site with OCHO* intermediate. The optimized Sn7-Sb3-O-GO NSs exhibit a HCOOH selectivity of 96.5% and partial current density of − 21.6 mA cm−2. The experiments and theory calculations show that the introduction of Sb secondary active site can accelerate water activation for forming unique *H species and the binding strength of OCHO* key intermediates, thereby enhancing the HCOOH selectivity in eCO2RR. This work lends credence to the novel metal-metal dual-active sites design strategy for eCO2RR sustainable energy conversion. An ultrathin Sn7-Sb3-O-GO electrocatalyst with dual active sites exhibits a high HCOOH selectivity of 96.5% and partial current density of − 21.6 mA cm−2 for eCO2RR. [Display omitted] •A metal-metal dual active sites strategy for eCO2RR sustainable energy conversion is proposed.•Snx-Sby-O-GO catalysts possess large-size 2D structure and controllable Sn/Sb ratio.•The introduction of Sb site can facilitate HCOOH production via accelerating H2O activation.•Sn7-Sb3-O-GO exhibits a HCOOH selectivity of 96.5% and partial current density of − 21.6 mA cm−2.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2022.121171</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Antimony ; Carbon dioxide ; Carbon dioxide reduction ; Catalysts ; Chemical reduction ; Controllability ; Design ; Dual-active site ; Electrochemistry ; Energy conversion ; Formic acid ; Intermediates ; Nanosheets ; Renewable energy ; Selectivity ; Sn-/Sb-based electrocatalyst ; Sustainability ; Sustainable development ; Tin</subject><ispartof>Applied catalysis. B, Environmental, 2022-06, Vol.307, p.121171, Article 121171</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 15, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-7a1642e27d08dcb8741269f337078554244de651d9c544ba930cb71dfc3b1313</citedby><cites>FETCH-LOGICAL-c334t-7a1642e27d08dcb8741269f337078554244de651d9c544ba930cb71dfc3b1313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apcatb.2022.121171$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>He, Haichuan</creatorcontrib><creatorcontrib>Wu, Jian</creatorcontrib><creatorcontrib>Yu, Xiao</creatorcontrib><creatorcontrib>Xia, Dan</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Chen, Fei</creatorcontrib><creatorcontrib>Wang, Liqiang</creatorcontrib><creatorcontrib>Wu, Linlin</creatorcontrib><creatorcontrib>Huang, Jianhan</creatorcontrib><creatorcontrib>Zhao, Ning</creatorcontrib><creatorcontrib>Deng, Liu</creatorcontrib><creatorcontrib>Liu, You-Nian</creatorcontrib><title>Dual-active sites design of Snx-Sby-O-GO nanosheets for enhancing electrochemical CO2 reduction via Sb-accelerating water activation</title><title>Applied catalysis. B, Environmental</title><description>Electrochemical CO2 reduction reaction (eCO2RR) is a promising approach for the sustainable development of energy and environment, yet the control over selectivity of eCO2RR is challenging and entails intelligent active site design. Herein, we firstly propose dual-active sites design of Snx-Sby-O-GO nanosheets (NSs) for controlling the reaction pathways. The Snx-Sby-O-GO NSs catalyst possesses large-size ultrathin structure and controllable Sn/Sb ratio, strengthening the interaction at the active site with OCHO* intermediate. The optimized Sn7-Sb3-O-GO NSs exhibit a HCOOH selectivity of 96.5% and partial current density of − 21.6 mA cm−2. The experiments and theory calculations show that the introduction of Sb secondary active site can accelerate water activation for forming unique *H species and the binding strength of OCHO* key intermediates, thereby enhancing the HCOOH selectivity in eCO2RR. This work lends credence to the novel metal-metal dual-active sites design strategy for eCO2RR sustainable energy conversion. An ultrathin Sn7-Sb3-O-GO electrocatalyst with dual active sites exhibits a high HCOOH selectivity of 96.5% and partial current density of − 21.6 mA cm−2 for eCO2RR. [Display omitted] •A metal-metal dual active sites strategy for eCO2RR sustainable energy conversion is proposed.•Snx-Sby-O-GO catalysts possess large-size 2D structure and controllable Sn/Sb ratio.•The introduction of Sb site can facilitate HCOOH production via accelerating H2O activation.•Sn7-Sb3-O-GO exhibits a HCOOH selectivity of 96.5% and partial current density of − 21.6 mA cm−2.</description><subject>Antimony</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide reduction</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>Controllability</subject><subject>Design</subject><subject>Dual-active site</subject><subject>Electrochemistry</subject><subject>Energy conversion</subject><subject>Formic acid</subject><subject>Intermediates</subject><subject>Nanosheets</subject><subject>Renewable energy</subject><subject>Selectivity</subject><subject>Sn-/Sb-based electrocatalyst</subject><subject>Sustainability</subject><subject>Sustainable development</subject><subject>Tin</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kLlOAzEURS0EEmH5AwpL1A7eMp5pkFBYJaQUSW957DeJo2AH2wnQ8-FMGGqq15x7r95B6IrRMaOsulmPzdaa0o455XzMOGOKHaERq5Ugoq7FMRrRhldECCVO0VnOa0opF7weoe_7ndkQY4vfA86-QMYOsl8GHDs8D59k3n6RGXma4WBCzCuAknEXE4awMsH6sMSwAVtStCt489Zs8HTGcQK36ztjwHtv8LztF2zPJVMOiQ9TIOHfUXOALtBJZzYZLv_uOVo8Piymz-R19vQyvXslVghZiDKskhy4crR2tq2VZLxquv4rqurJRHIpHVQT5ho7kbI1jaC2Vcx1VrRMMHGOrofabYrvO8hFr-MuhX5R80pWjVLil5IDZVPMOUGnt8m_mfSlGdUH3XqtB936oFsPuvvY7RCD_oG9h6Sz9RAsOJ96P9pF_3_BD2OnipU</recordid><startdate>20220615</startdate><enddate>20220615</enddate><creator>He, Haichuan</creator><creator>Wu, Jian</creator><creator>Yu, Xiao</creator><creator>Xia, Dan</creator><creator>Wang, Yan</creator><creator>Chen, Fei</creator><creator>Wang, Liqiang</creator><creator>Wu, Linlin</creator><creator>Huang, Jianhan</creator><creator>Zhao, Ning</creator><creator>Deng, Liu</creator><creator>Liu, You-Nian</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20220615</creationdate><title>Dual-active sites design of Snx-Sby-O-GO nanosheets for enhancing electrochemical CO2 reduction via Sb-accelerating water activation</title><author>He, Haichuan ; Wu, Jian ; Yu, Xiao ; Xia, Dan ; Wang, Yan ; Chen, Fei ; Wang, Liqiang ; Wu, Linlin ; Huang, Jianhan ; Zhao, Ning ; Deng, Liu ; Liu, You-Nian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-7a1642e27d08dcb8741269f337078554244de651d9c544ba930cb71dfc3b1313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antimony</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide reduction</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>Controllability</topic><topic>Design</topic><topic>Dual-active site</topic><topic>Electrochemistry</topic><topic>Energy conversion</topic><topic>Formic acid</topic><topic>Intermediates</topic><topic>Nanosheets</topic><topic>Renewable energy</topic><topic>Selectivity</topic><topic>Sn-/Sb-based electrocatalyst</topic><topic>Sustainability</topic><topic>Sustainable development</topic><topic>Tin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Haichuan</creatorcontrib><creatorcontrib>Wu, Jian</creatorcontrib><creatorcontrib>Yu, Xiao</creatorcontrib><creatorcontrib>Xia, Dan</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Chen, Fei</creatorcontrib><creatorcontrib>Wang, Liqiang</creatorcontrib><creatorcontrib>Wu, Linlin</creatorcontrib><creatorcontrib>Huang, Jianhan</creatorcontrib><creatorcontrib>Zhao, Ning</creatorcontrib><creatorcontrib>Deng, Liu</creatorcontrib><creatorcontrib>Liu, You-Nian</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Haichuan</au><au>Wu, Jian</au><au>Yu, Xiao</au><au>Xia, Dan</au><au>Wang, Yan</au><au>Chen, Fei</au><au>Wang, Liqiang</au><au>Wu, Linlin</au><au>Huang, Jianhan</au><au>Zhao, Ning</au><au>Deng, Liu</au><au>Liu, You-Nian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual-active sites design of Snx-Sby-O-GO nanosheets for enhancing electrochemical CO2 reduction via Sb-accelerating water activation</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2022-06-15</date><risdate>2022</risdate><volume>307</volume><spage>121171</spage><pages>121171-</pages><artnum>121171</artnum><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>Electrochemical CO2 reduction reaction (eCO2RR) is a promising approach for the sustainable development of energy and environment, yet the control over selectivity of eCO2RR is challenging and entails intelligent active site design. Herein, we firstly propose dual-active sites design of Snx-Sby-O-GO nanosheets (NSs) for controlling the reaction pathways. The Snx-Sby-O-GO NSs catalyst possesses large-size ultrathin structure and controllable Sn/Sb ratio, strengthening the interaction at the active site with OCHO* intermediate. The optimized Sn7-Sb3-O-GO NSs exhibit a HCOOH selectivity of 96.5% and partial current density of − 21.6 mA cm−2. The experiments and theory calculations show that the introduction of Sb secondary active site can accelerate water activation for forming unique *H species and the binding strength of OCHO* key intermediates, thereby enhancing the HCOOH selectivity in eCO2RR. This work lends credence to the novel metal-metal dual-active sites design strategy for eCO2RR sustainable energy conversion. An ultrathin Sn7-Sb3-O-GO electrocatalyst with dual active sites exhibits a high HCOOH selectivity of 96.5% and partial current density of − 21.6 mA cm−2 for eCO2RR. [Display omitted] •A metal-metal dual active sites strategy for eCO2RR sustainable energy conversion is proposed.•Snx-Sby-O-GO catalysts possess large-size 2D structure and controllable Sn/Sb ratio.•The introduction of Sb site can facilitate HCOOH production via accelerating H2O activation.•Sn7-Sb3-O-GO exhibits a HCOOH selectivity of 96.5% and partial current density of − 21.6 mA cm−2.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcatb.2022.121171</doi></addata></record>
fulltext fulltext
identifier ISSN: 0926-3373
ispartof Applied catalysis. B, Environmental, 2022-06, Vol.307, p.121171, Article 121171
issn 0926-3373
1873-3883
language eng
recordid cdi_proquest_journals_2646977331
source Elsevier ScienceDirect Journals Complete
subjects Antimony
Carbon dioxide
Carbon dioxide reduction
Catalysts
Chemical reduction
Controllability
Design
Dual-active site
Electrochemistry
Energy conversion
Formic acid
Intermediates
Nanosheets
Renewable energy
Selectivity
Sn-/Sb-based electrocatalyst
Sustainability
Sustainable development
Tin
title Dual-active sites design of Snx-Sby-O-GO nanosheets for enhancing electrochemical CO2 reduction via Sb-accelerating water activation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T05%3A53%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual-active%20sites%20design%20of%20Snx-Sby-O-GO%20nanosheets%20for%20enhancing%20electrochemical%20CO2%20reduction%20via%20Sb-accelerating%20water%20activation&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=He,%20Haichuan&rft.date=2022-06-15&rft.volume=307&rft.spage=121171&rft.pages=121171-&rft.artnum=121171&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2022.121171&rft_dat=%3Cproquest_cross%3E2646977331%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2646977331&rft_id=info:pmid/&rft_els_id=S0926337322001114&rfr_iscdi=true